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1. Introduction
Modern physics concerns itself with intricate, overwhelming problems: Grand
unification and string theory, Higgs bosons and the origin of mass or dark matter
and the formation of galaxies. All these topics have in common being far from
everyday experience and residing at energy- and time-scales beyond intuition.
On the other hand, physics immediately surrounding us, especially phenomena
of tangible experience, are commonly believed to be reasonably free of physical
mystery and of little interest to modern physics.
Classical fluid dynamics remains an astonishing exception from this rule. This

is quite surprising, since its vast applications concern humanity since its dawn
and the mathematical groundwork has been laid centuries ago. Ultimately a
consequence of the underlying molecular interaction, continuous fluid dynamics
arises as emergent behavior in a wide range of situations and are able to describe
many physical phenomena on all length scales: combustion and turbulent mix-
ing, aviation, oceanic flows, weather prediction, climate change, solar activity
and space weather, planet formation, space nebulae or galaxy formation. Be-
yond technical applications, the underlying model equations are a paramount
example for the complexity of dynamics in nonlinear partial differential equa-
tions, with the most prominent example of the incompressible Navier-Stokes
equations. For now more than two centuries, these equations have withstood
the minds of mathematicians and physicists alike: The derivation of the na-
ture of turbulence from the equations, as well as the global existence of smooth
solutions is not known to date. The huge mathematical difficulties concerning
the latter problem were recognized by its elevation to the status of “Millennium
Prize Problem” by the Clay Mathematics Institute (see the official problem
description by Fefferman [35], or review articles e.g. by Doering [32], Ladyzhen-
skaya [69]). A proof of existence of global regular solutions to the Navier-Stokes
equation is believed to entail the development of completely new methods for the
analysis of partial differential equations. The absence of mathematical certainty
for the Navier-Stokes equations may seem to leave the physicist in a somewhat
embarrassing position: The equation is known and well tested in application,
but the existence of solutions is unclear in relevant cases.
Yet, the actual impact of a supposed breakdown of solutions for the Navier-

Stokes equations on physics of fluids is smaller than one might expect and
appears like a mere technical detail on second thought. Singularities in the
Navier-Stokes equation would, if existent, appear on very small scales. Obvi-
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1. Introduction

ously, continuum mechanics do not hold on these smallest scales and the break-
down of the model equation would appear in a regime in which the model does
not describe reality anyhow. Furthermore, the nature of supposed singulari-
ties for the Navier-Stokes equation is proven to be unphysical in nature, as it
requires the existence of infinite momentum. Without external forcing, from
smooth initial conditions and in the presence of friction, the occurrence of infi-
nite momentum is impossible to justify physically. The impact of singularities
is additionally limited by the fact that the space-time dimension of the singular
region is proven to be less than one for the Navier-Stokes equations [12].
In the inviscid limit, the situation is quite the opposite. The incompress-

ible Euler equations for ideal fluids appear to be of little physical significance,
since friction is the dominating process on small scales in most applications.
The ignorance regarding existence of global solutions is even larger for the in-
viscid case: The notion of weak solutions, which are well established for the
Navier-Stokes equations since Leray [71], is unknown for the three-dimensional
Euler equations. Nevertheless, the formation of finite-time Euler singularities
significantly concerns our understanding of (viscid) fluid dynamics. Euler sin-
gularities, if existent, would coincide with the development of large gradients in
the velocity field. Since no friction is limiting the increase in velocity gradients,
infinite momentum is not mandatory for a blowup of the Euler equations. The
inviscid limit is, therefore, not only a mere description of ideal fluids, but ex-
plores the possibility of inherent dynamical processes beyond friction, that limit
the transition to smaller and smaller scales. This has immediate implications on
the existence of a cut-off velocity in high Reynolds-number Navier-Stokes flows,
leading to the slightly exaggerated question, quoting Constantin [25]: “Do we
need Schrödinger’s equations to calculate the flow around a moving car? Or to
predict tomorrow’s weather?” For that reason, the problem of singularities for
the Euler equations is of far greater importance to the physical understanding
of fluids than the analogous problem for the Navier-Stokes equations.
A similar argument is valid for turbulence. Turbulent flows are omnipresent.

Turbulence may even be seen as the generic state of incompressible fluids. Never-
theless, analytic understanding of turbulence has yet to bridge the gap between
the partial differential equation and the statistical properties obtained from ex-
periments or numerical simulations. Today’s phenomenological description of
turbulence (e.g. Frisch [36], She and Lévêque [87]), which is built on the basis
of the celebrated theory by Kolmogorov [64, 65, 66], contains as a central point
that, in the limit of vanishing viscosity, energy dissipation has to stay finite. This
behavior could be explained by the formation of finite-time Euler singularities,
as implied by Onsager’s conjecture [79]. For three-dimensional incompressible
flow, non-conservation of energy might be caused not only by viscosity but by
missing regularity in the velocity field. Energy dissipation might occur, if the
Hölder continuity exponent is smaller than 1/3 for the velocity field. This con-
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1.1. Outline

jecture was later proven in terms of Besov spaces instead of Hölder continuity
by Cheskidov et al. [15], Constantin et al. [27]. As a consequence, a mathemat-
ical description of turbulence might be possible in terms of weak solutions for
the Euler equations, if smooth solutions gain enough roughness in finite time.
Therefore, insight into the formation of finite-time singularities for the Euler
equations could uncover a mechanism essential for the understanding of viscous
turbulence.
The search for finite-time singularities of the Euler equations has resulted in

extensive literature, with many analytical results being relatively young. Es-
pecially the advent of scientific computing has given research a new direction:
Reports of numerical evidence supporting or denying the existence of finite-time
singularities for the Euler equations are numerous (see e.g. Gibbon [39] for a
compiled list).
As a now classical result, the blowup criterion of Beale et al. [3] connects the

existence of solutions for the incompressible Euler equations in three dimensions
to the critical accumulation of vorticity. More recently, geometric analysis of the
flow [28, 29] has helped increasing insight into the process of vorticity growth.
Among these geometric blowup criteria, theorems developed by Deng et al.
[30] may be seen as the first to be suitable for verification by direct numerical
simulations. Exactly this was accomplished and will be presented in this work.
The overall idea is stated as follows: Given the results of analytical consider-

ations and the experience gained from numerical simulation of the Euler equa-
tions, certain scenarios are known to be compatible with the analytic require-
ments of a finite-time blowup, namely the global notion of self-similar collapse
to a point and the local process of vorticity accumulation by vorticity-strain
coupling. It has been tried in the past to construct explicit initial conditions
exploiting these scenarios to obtain numerical evidence for or against a finite-
time singularity, with surprisingly inconsistent results. The major reason for
this ambiguity is the critical dependence on extrapolation, which renders the
identification of singular versus near-singular behavior next to impossible by
numerical means. The hopes are high that the situation is less vague when con-
sidering geometric properties of the flow, as mentioned above. This work will
present the application of such geometric criteria to numerical data to sharpen
the distinction between singular and near-singular flow evolution.

1.1. Outline
This work is organized as follows:
Physical motivation and basic properties of the Euler equations are given in

chapter 2. This includes the presentation of the basic interaction of vorticity and
strain, conserved quantities and definition of terms necessary for the geometric
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1. Introduction

analysis of Euler flows, such as the notion of vortex lines and their behavior.
Chapter 3 gives an overview of the numerical algorithms used throughout

this work. The framework racoon is introduced, with emphasis on its ability
to utilize adaptively refined meshes and its high scalability on massively par-
allel computers. The numerical scheme for integrating the Euler equations is
presented and compared against competing discretizations. This defines the
groundwork for conducting the presented results for simulations of the Euler
equations with high resolutions.
A presentation of analytic results regarding the formation of finite-time Euler

singularities is given in chapter 4. Well-known methods for the analysis of PDEs
are used to put into perspective the classical result of Bealo-Kato-Majda. Based
on these results, geometric blowup criteria are introduced and the geometric
analysis of the flow is illustrated. The focus here is on the stretching of vortex
lines and its connection to accumulation of vorticity, as well as the Lagrangian
evolution of vortex line segments. This chapter defines the analytical criteria
that will be tested numerically in the following chapter.
Chapter 5 deals with the numerical simulation of possible finite-time Euler

singularities. First, scenarios for the formation of singularities are introduced
and necessary interactions are presented. Using these results, promising initial
conditions for Euler flows are justified and compared, resulting in a candidate for
subsequent simulations. The simulations are presented and analyzed in regard
to the geometrical blowup criteria. These results will serve as evidence against
the formation of a finite-time blowup of the considered class of flows.
In chapter 6, the obtained results will be summarized and a conclusion will

be given.
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2. The Euler equations
As defined by Batchelor [2], fluid dynamics deals with the behavior of liquids
and gases in motion. Assuming incompressibility, the distinction between these
two groups lies merely in the numerical value of quantities, most importantly
the mass density. The difference in their dynamical behavior is therefore not
of fundamental nature from the theorist’s point of view. It is thus common to
refer to both groups with the general term fluid.
The dynamic evolution of fluids can be understood as a direct consequence

of fundamental conservation laws without putting emphasis on the individual
substance of the fluid. This approach will be taken in section 2.1 to give a
summarized motivation for the Euler equations (and to some extent for the
Navier-Stokes equations). In addition to this heuristic point of view, one can
also perceive a quantity of matter in fluidic state as a collection of individual
particles. The usual approach then is to consider the first few moments of a
kinetic description (like the Boltzmann equation) and passing to the continuous
limit with some additional assumptions to arrive at the Euler- or Navier-Stokes
equations.
Even though every fluid is composed of interacting molecules, and their dy-

namics ultimately are a consequence of their mutual collisions and reaction to
outer forces, the continuous description offers a good approximation to the mea-
sured behavior (and in many cases is the only viable solution). Nevertheless,
the underlying assumption of continuity has to be kept in mind and the model
equation may no longer approximate nature as soon as the assumption is no
longer met. This is of particular importance when considering the physical
consequences of singular or near-singular evolution of the model equations.

2.1. Physical Motivation
In the continuous approach we consider the fluid’s variables to be scalar- or
vector-valued fields in a d-dimensional region of space (the domain) Ω ⊂ Rd.
For this thesis, d takes the values of 2 or 3, with d = 3 being the relevant case.
Let u(x, t) be the fluid velocity, ρ(x, t) the density and p(x, t) the pressure
field. Now consider the fluid contained in an infinitesimal fluid element dV at
time t located at x ∈ Ω. It has the mass dm = ρ(x, t)dV and the momentum
d (mu(x, t)).
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2. The Euler equations

x
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z

p dA

p dA

p dA
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Figure 2.1.: An infinitesimal fluid element of Volume dV = dxdydz. The net force
on the element is given as the pressure difference in normal direction across the
volume, dF = ∇pdV

As the system evolves, we want to track the evolution of these quantities in
time. The change of a quantity along a fluid elements’ path is calculated via
the convective or material derivative

D

Dt
= ∂

∂t
+ u(x, t) · ∇ . (2.1)

The equations of motion for a fluid are a consequence of two fundamental
conservation laws: The conservation of mass and the conservation of momentum.
For conservation of mass we require that the mass of a fluid element is fixed in
time,

Ddm
Dt

= 0 . (2.2)

Without further assumptions, the volume of the fluid element may change in
time:

DdV
Dt

= (∇ · u)dV . (2.3)

Taking these two in combination, we get the evolution equation for the fluid
density as

Dρ

Dt
= D

Dt

dm
dV = − dm

(dV )2
DdV
Dt

= −ρ∇ · u (2.4)

which in turn leads to the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0 . (2.5)

The conservation of momentum, or Newton’s second law, states that the total
change of momentum is equal to the net applied force dF, which in turn consists
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2.1. Physical Motivation

of the pressure difference across the volume of the fluid element in inward normal
direction, −∇pdV (see figure 2.1), and a possible external force f :

Dd(mu)
Dt

= dF = −∇pdV + f . (2.6)

In total we arrive at the Euler equations
∂u
∂t

+ u · ∇u = −1
ρ
∇p+ f . (2.7)

The Euler equations (2.7) in conjunction with the continuity equation (2.5)
provide a total of d + 1 evolution equations for d + 2 unknowns; what is still
needed is a connection between the pressure p and the fluid density ρ. For
the compressible case, several possibilities are practical, ranging from simple
assumptions such as p ∼ ρ (isothermal case) to an additional evolution equation
for the temperature or internal energy. In the incompressible case, however, the
velocity field u fulfills the additional constraint

∇ · u = 0 . (2.8)

This constraint is a good approximation to nature as long as the maximum
velocity of the flow is far below the speed of sound in the fluid, and in fact is
equivalent to the case of infinite speed of sound. Since the speed of sound is the
upper bound for the velocity at which information of changes in the physical
quantities are allowed to travel through the fluid, the simplification in (2.8)
results in an instantaneous global reaction of the fluid to local changes. This
infinitely fast propagation of information, as will be seen later, is realized by
the way the pressure is modeled.
Combining the incompressibility constraint (2.8) with the continuity equation

(2.5), we arrive at
∂ρ

∂t
+ u · ∇ρ = 0 . (2.9)

Thus, in the incompressible case, the initial density ρ0(x) = ρ(x, 0) is advected
with the flow. In other words the density of a fluid element does no longer change
in time. For an initially constant density ρ0(x) = const. the fluid density no
longer is an unknown and, without loss of generality, may be set to unity. The
Euler equations then simplify to

∂u
∂t

+ u · ∇u +∇p = 0 (2.10)

in the absence of external forcing. In the course of this work, only the incom-
pressible Euler equation of type (2.10) without external forcing will be consid-
ered. For the sake of simplicity, this equation will be called Euler equation,
without additional specifiers such as “incompressible” or “force-free”.
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2. The Euler equations

Despite the fact that equation (2.10) appears to consist of d + 1 unknowns,
namely the velocity field u and the pressure p, the incompressibility constraint
(2.8) actually determines the way the pressure behaves. This can be seen by tak-
ing the divergence of the Euler equations (2.7) and using the incompressibility
constraint:

∆p = −∇ · (u · ∇u) . (2.11)

For each instant in time the pressure is determined via a Poisson equation de-
pending only on the present velocity field. Because of this elliptic connection,
the Euler equations of the form (2.10) in conjunction with the incompressibility
constraint (2.8) may be seen as a non-local evolution equation for the velocity
field alone. Getting rid of pressure and density via the assumption of incom-
pressibility has in turn resulted in non-locality of the evolution equation.
To arrive at a mathematically completely posed set of equation one has to pro-

vide equations (2.10) and (2.8) with appropriate boundary conditions. Through-
out this thesis I will restrict this choice to the easiest alternatives of the whole
space Rd or the d-dimensional torus T d.
In addition, the incompressible Navier-Stokes equation is obtained by adding

a friction term to the equation:

∂u
∂t

+ u · ∇u +∇p = ν∆u , (2.12)

where ν is the kinematic viscosity.

2.2. Properties of the Euler equations
The heuristic derivation of the Euler equations above gives an idea of the physi-
cal background of fluids in motion. It is necessary for a mathematical treatment
of the equations, however, to introduce more rigorous definitions of fluid quan-
tities and demonstrate some important connections between them.

2.2.1. Vorticity and strain
A revealing way to reformulate the incompressible Euler equations is in terms of
the fluid vorticity ω = ∇× u. By taking the curl of the Euler equation (2.10),

∂ω

∂t
+ u · ∇ω = ω · ∇u , (2.13)

the pressure term vanishes and we arrive at the vorticity formulation of the
Euler equations, which is an evolution equation for the vorticity vector field
ω(x, t).

18



2.2. Properties of the Euler equations

Equation (2.13) can be rewritten in terms of the convective derivative,

Dω

Dt
= ω · ∇u , (2.14)

which emphasizes the fact that the vorticity formulation is an advection equation
for the vorticity, with an additional term on the right hand side. This additional
term, the vortex stretching term, is responsible for possible self-amplification
processes and marks the very center of the fundamental difficulty of the 3-
dimensional Euler equations, as will be discussed in more detail in chapters 4
and 5.
On the other hand, equation (2.14) highlights the radical difference between

the cases d = 2 and d = 3. In the two-dimensional case, the right hand side of
(2.14) disappears, as the velocity gradient is element of the tangent space while
the vorticity is orthogonal to it in every point. Thus, in 2D, we arrive at

Dω

Dt
= 0 . (2.15)

For 2D flows the vorticity is just advected with the flow, vorticity is neither
created nor destroyed via the flow dynamics. In particular, and in anticipation
of the question for finite-time singularities, the maximum of the vorticity is
constant in time. Even more drastic, in 2 dimensions every Lp-norm of the
vorticity is conserved: By multiplying equation (2.15) by ωp−1, p > 1 and
integrating, we get ∫

Ω

ωp−1∂ω

∂t
dV +

∫
Ω

ωp−1u · ∇ω dV = 0

⇒ ∂

∂t

∫
Ω

ωp dV +
∫
Ω

u · ∇ωp dV = 0

⇒ ∂

∂t
‖ω‖pLp(Ω) −

∫
Ω

(∇ · u) ωp dV = 0

⇒ ∂

∂t
‖ω‖Lp(Ω) = 0 .

This connection turns out to be an easy and elegant way to get insight into how
“tame” 2-dimensional Euler flows are in contrast to the 3-dimensional case.
Since in the 3-dimensional case vortex dynamics turn out to be more com-

plicated, it is advantageous to establish further relations between the velocity
gradient and the vorticity. First, note that the 3× 3-Matrix ∇u can be split in
a symmetric part S and an antisymmetric part H, ∇u = S +H, with

S = 1
2(∇u +∇uT ), (2.16)
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2. The Euler equations

H = 1
2(∇u−∇uT ) . (2.17)

S is called the strain tensor or deformation matrix, whereas H is the rotation
matrix. The name of the latter already suggests its relationship to the vorticity,
which precisely is given by

Hv = 1
2ω × v, ∀v ∈ R3 . (2.18)

This connection is easily shown,

1
2(ω × v)k = 1

2εijkεmni(∂mun)vj

= 1
2(δjmδkn − δkmδjn)(∂mun)vj

= 1
2(∂juk − ∂kuj)vj

= (Hv)k ,

using summation convention.
Since S is symmetric by definition, there is a matrix A ∈ SO(3) such that S

becomes a diagonal matrix,

ASAT = diag(λ1, λ2, λ3) , (2.19)

where the λi are the three eigenvalues of S. The incompressibility constraint
ensures ∇ · u = tr(S) = λ1 + λ2 + λ3 = 0.
To formulate evolution equations for both S and H, we take the gradient of

the Euler equations (2.10):

D(∇u)
Dt

+ (∇u)2 + P = 0 , (2.20)

where P is the pressure Hessian. Since ∇u = S +H, and

(∇u)2 = (S2 +H2)︸ ︷︷ ︸
symm.

+ (SH +HS)︸ ︷︷ ︸
antisymm.

, (2.21)

we can divide equation (2.20) into its symmetric and antisymmetric part to
arrive at the evolution equations for S and H:

DS

Dt
+ S2 +H2 + P = 0 (2.22)

DH

Dt
+ SH +HS = 0 . (2.23)
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2.2. Properties of the Euler equations

It is possible to recover the velocity field from the vorticity field by applying
the Biot-Savart law known from electrodynamics:

u(x) = 1
4π

∫ 1
|x− x′|3

(x− x′)× ω(x′)dx′ . (2.24)

The integration over the whole domain in equation (2.24) again underlines the
non-local nature of the incompressibility condition. The pressure term of the
Euler equations (2.10) is eliminated in the vorticity formulation (2.13), but its
non-locality is implicitly contained in the Biot-Savart law.
Since the strain is defined as symmetrized gradient of the velocity, the Biot-

Savart law allows for the formulation of strain in terms of the vorticity. Differ-
entiating (2.24) yields

∂ui(x)
∂xj

= 3
4π

∫ εilkyjyl
|y|5

ωk(x′)dx′ , (2.25)

where y = (x − x′) and using summation convention. Symmetrizing equation
(2.25) results in

Sij = 3
8π

∫
(εilkyj + εjlkyi)

ylωk(x′)
|y|5

dx′ . (2.26)

By means of equation (2.26) it is then possible to reformulate the Euler equations
as an integro-differential equation in the vorticity ω alone. Even though this
is impractical for numerical simulations, it is of high educational value since it
captures the dynamic interaction between vorticity and strain. It will therefore
be reviewed to study possible scenarios for finite-time singularities in the Euler
equations in chapter 4.

2.2.2. Particle trajectories and the flow map
The Euler equations in the form of (2.8) and (2.10) or in the vorticity formulation
(2.13) are given in terms of scalar- or vector-valued fields defined in the whole
domain Ω. The physical location, described by the location vector x ∈ Ω, is in
itself constant in time and may be thought of as a fixed frame of reference for
the underlying fluid motion. This point of view is called the Eulerian viewpoint.
In contrast to this, it is possible (and often instructive) to follow the evolution

of a fluid element within the fluid, or, in other words, to follow the motion of
a particle which is advected with the flow. This point of view is called the
Lagrangian viewpoint. At its core lies the flow map or particle trajectory map
X(α, t) : Ω× R+ → Ω,

dX
dt

(α, t) = u(X(α, t), t) , X(α, 0) = α , (2.27)
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which describes the position of each fluid element at time t originating from α.
The flow map X and its Jacobian J(α, t) = det(∇αX(α, t)) allow for a re-

formulation of the incompressibility condition (2.8). It is easy to prove (see e.g.
[72]) that the following statements are equivalent:

(i) ∇ · u = 0,

(ii) J(α, t) = 1,

(iii) ∀U ⊂ Ω, t ≥ 0 : vol(X(U, t)) = vol(U).

Especially (ii) may be used to derive connections in conjunction with the
transformation formula.
Using the flow map to track the evolution of an arbitrary smooth vector field

h(x, t) yields another useful relationship, which will be of importance on several
occasions later on. If and only if

h(X(α, t), t) = ∇αX(α, t)h(α, 0) (2.28)

then
Dh
Dt

= h · ∇u . (2.29)

This is seen as follows. First, the definition of the flow map (2.27) provides:

dX
dt

(α, t) = u(X(α, t), t)

⇒ d

dt
∇αX(α, t) = (∇u)∇αX(α, t)

⇒ d

dt
∇αX(α, t)h(α, 0) = (∇u)∇αX(α, t)h(α, 0) .

U X(U, t)

Figure 2.2.: Incompressibility condition in terms of the flow map. An infinitesimal
volume element U ⊂ Ω may be deformed violently by the flow, but its image at
later time, X(U, t) nevertheless retains the same volume.
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On the other hand, equation (2.29) immediately reveals

d

dt
h(X(α, t), t) = u · ∇h(X(α, t), t) + ∂

∂t
h(X(α, t), t)

= u · ∇h(X(α, t), t) +
(
h(X(α, t), t) · ∇u− u · ∇h(X(α, t), t)

)
= (∇u)h(X(α, t), t) .

Now, since both h(X(α, t), t) and ∇αX(α, t)h(α, 0) satisfy the same ODE with
identical initial conditions h(α, 0) they must be equal for all times. I will later
on refer to this law as the transport formula.

2.2.3. Conserved quantities
As argued above the Euler equations may be seen as a direct consequence of
two conservation laws, namely the conservation of mass and the conservation
of momentum. Yet a flow obeying the incompressible Euler equations exhibits
conserved quantities beyond those two.
The kinetic energy of a flow is defined as

Ekin =
∫
Ω

1
2 |u|

2ddx = 1
2‖u‖

2
L2(Ω) . (2.30)

It holds that
dEkin

dt
=
∫
Ω

u · ∂u
∂t

ddx

=
∫
Ω

u · (u · ∇u +∇p) ddx

= −
∫
∂Ω

(1
2 |u|

2 + p
)

u · dA ,

where in the last line both the incompressibility constraint and Gauss’ theorem
are used. Since the surface integral vanishes for the aforementioned boundary
conditions (and even stationary rigid boundary conditions u · n = 0 on ∂Ω for
that matter), we arrive at the conservation of kinetic energy,

dEkin

dt
= 0 . (2.31)

Let furthermore A(t = 0) be a bounded, open, smooth surface, and C(t = 0)
its smooth, oriented boundary, such that both evolve with the flow,

A(t) = X(A(0), t), C(t) = X(C(0), t) . (2.32)
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Figure 2.3.: The circulation Γ of the velocity field along a curve C(t) advected with
the flow is conserved in time (left), as well as the flux of vorticity through the
enclosed surface A(t) (right).

Then the circulation along C(t),

ΓC(t) =
∮
C(t)

u · ds , (2.33)

is a conserved quantity,
DΓC(t)

Dt
= 0 . (2.34)

Equation (2.34) is often called Kelvin’s circulation theorem (compare figure 2.3).
To prove it, consider a line element ds of C(t). It is readily seen from the
transport formula (2.29) that ds obeys

Dds
Dt

= ds · ∇u . (2.35)

Now DΓC(t)

Dt
= D

Dt

∮
C(t)

u · ds

=
∮
C(t)

(
D

Dt
u · ds + u · (ds · ∇u)

)

=
∫
A(t)

(∇× (−∇p)) · ds + 1
2

∫
A(t)

(∇×∇|u|2) · ds

= 0 .
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ω(x, 0)

ω(x, t)

X(α, t)

Figure 2.4.: The vortex stretching mechanism: If in some region the vorticity ω is
aligned parallel to the vortex stretching term Sω, then the vorticity is amplified.
Due to conservation of vorticity flux the tube’s diameter shrinks.

As immediate consequence, the vorticity flux through a Lagrangian surface

FA(t) =
∫
A(t)

ω · ds (2.36)

is conserved, too. This law, depicted in figure 2.3 (right), is sometimes called
Helmholtz’ vortex theorem.

2.2.4. Vortex dynamics, vortex lines and vortex
stretching

Crucial to the understanding of the dynamics of the Euler equations is the
evolution of the vorticity. As pointed out above, considerations concerning the
vorticity easily suffice to rule out possible singular behavior of 2-dimensional
flows (even if the rigorous proof is more intricate, e.g. given by Judovic̆ [49]
for weak solutions and by Kato [50] for classical solutions), whereas the whole
complexity of 3-dimensional flows is best discernible when analyzing again the
characteristics of the vorticity. And, famously beginning with the theorem of
Beale et al. [3], much of today’s research of inviscid fluid dynamics is focused on
vortex dynamics, vorticity amplification mechanisms and vortex line geometry.
An insight into the process of vorticity amplification in a fluid element travel-

ing with the flow is obtained by analyzing the vortex stretching term, as depicted
in figure 2.4. Recalling the vorticity formulation (2.14) of the Euler equations,
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2. The Euler equations

and inserting the definition of the strain tensor we get

Dω

Dt
= ω · ∇u

= ω · (H + S) (2.37)
= Sω ,

sinceHω = 1
2ω×ω = 0. As has already been pointed out, S is symmetric, hence

its eigenvalues λi are real and the corresponding eigenvectors vi are orthogonal.
Without loss of generality we set λ1 ≥ λ2 ≥ λ3. Define the direction of vorticity
by

ξ(x, t) = ω(x, t)
|ω(x, t)| . (2.38)

Now, the vortex stretching is most violent when ξ is aligned with the eigenvector
v1 to the largest eigenvalue λ1. In the worst case scenario of exact alignment and
coupled growth, the vortex stretching term may become quadratic in ω, leading
to an infinite amplification of vorticity in finite time. Whether such a scenario
is prevented by inherent mechanisms of the Euler equations is not known. In
chapter 5 scenarios are presented that are explicitly constructed having this
amplification mechanism in mind.
Let us quantify the amplification of vorticity by introducing the vorticity

amplification factor α(x), such that

D

Dt
|ω| = α|ω| . (2.39)

Then, α is the projection of the vortex stretching term onto the direction of
vorticity,

α = (Sξ) · ξ . (2.40)
Proof:

D

Dt
|ω| = ω

|ω|
· D
Dt
ω

= (Sω) · ξ
= [(Sξ) · ξ] |ω| .

This perspective may be contrasted by a strictly Lagrangian viewpoint of vor-
tex dynamics. The fundamental connection to be named here is the vorticity
transport formula (more details are given by e.g. Chorin and Marsden [21]). Fol-
lowing directly from the the vorticity formulation (2.14) in conjunction with the
general transport formula (2.28) with h(x, t) = ω(x, t), the vorticity transport
formula reads

ω(X(α, t), t) = ∇αX(α, t)ω(α, 0) . (2.41)
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��
��

x

c(s)

ω(x, t)

ω(c(s), t)

u(t)

Figure 2.5.: Sketch of a vortex line. A vortex line is in every point tangent to the
vorticity. Vortex lines are advected with the flow.

Since in two dimensions the term ∇αX(α, t) leaves the only non-vanishing com-
ponent of the vorticity ω = (0, 0, ωz) intact, we arrive at

ω(X(α, t), t) = ω(α, 0) . (2.42)

This derivation results in the Lagrangian equivalent of the already mentioned
equation (2.15): In two dimensions, the vorticity is advected with the flow
For three space dimensions, equation (2.41) allows for complex behavior,

which is best viewed in a geometric context. We therefore introduce the def-
inition of the terms “vortex line” and “vortex tube”. These will again be of
importance in section 4.2 for the formulation of finite-time blowup criteria.
A vortex line at the time t starting at the point x is a curve c : R→ Ω with

ċ(s) = ω(c(s), t), c(0) = x , (2.43)

which is an integral curve along the vorticity vector field. As long as the vorticity
is Lipschitz continuous, the Picard-Lindelöf theorem implies unique existence of
the vortex line.
With the help of the vorticity transport formula (2.41) it is easy to prove that

vortex lines move with the flow (i.e. two points on the same vortex line that are
advected with the flow stay on the same vortex line indefinitely). This is done
by verifying that the Lagrangian image of the curve at later times, X(c(s), t),
still is tangential to the vorticity vector field in all its points. Using the chain
rule,

∂

∂s
X(c(s), t) = ∇αX(c(s), t)ċ(s) (2.44)
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��

S

γ

ω

Figure 2.6.: Sketch of a vortex tube. A vortex tube is composed of vortex lines
starting at a surface S that is nowhere tangent to the vorticity.

= ∇αX(c(s), t)ω0(c(s)) . (2.45)

Apply the vorticity transport equation (2.41) to arrive at

∂

∂s
X(c(s), t) = ω(X(c(s), t), t) , (2.46)

which shows that the Lagrangian image of the vortex line still is a valid vortex
line in all points.
A vortex tube, as sketched in figure 2.6, is the collection of all vortex lines

starting in each point of a surface S that is in no point tangent to the vorticity
vector field. With the same argument as above, a vortex tube is transported in
the flow.
As a simple consequence of the solenoidality of the vorticity vector field, the

flux of vorticity through different cross-sections of the tube is identical by Gauss’
law. The thinning of a vortex tube in a region always coincides with an increase
of vorticity in that region. Or, anticipating possible blowup scenarios: For the
vorticity to grow indefinitely in a point, the surrounding vortex tube has to
collapse to zero thickness. It is not known, whether this can happen in finite
time. As depicted in figure 2.4, a possible mechanism for the collapse of vortex
tubes could be the vortex stretching term.
The connections and definitions given in this chapter will serve as a basis

for the understanding of the possible formation of singularities in the Euler
equations. They will be used to derive blowup criteria in chapter 4 which can
be verified by numerical simulations.
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3. Numerics
All numerical simulations throughout this thesis were conducted using the newly
developed framework racoon III (refined adaptive computations with object-
oriented numerics). As the goal of this thesis implies the need for high resolution
simulations of the Euler equation, a considerable amount of work had to be put
into the development of new components for the framework or the extension of
existing ones. The choice of numerical algorithms for the problems at hand have
a crucial impact on the overall performance and accuracy of the simulations.
In the following sections I will, therefore, lay out the relevant modules of the
framework, with a focus on the consequences of several aspects of incompressible
fluid dynamics and the search for finite-time singularities on various design
choices.
First, a brief introduction into the core features of the framework racoon III

will be given in section 3.1. The focus here is on the interplay between adap-
tively refined meshes, massively parallel computing and their implications on
the integration of the Euler equations.
In section 3.2, the discretization and numerical scheme for integrating the

Euler equations will be presented. A comparison between competing methods
will be made with emphasis on their applicability to the hunt for finite-time
singularities and the observation of geometric flow properties.
As part of the simulation of the Euler equations, the incompressibility condi-

tion necessarily involves the solution of a Poisson equation, which will be treated
with the multigrid algorithm. Specific ramifications of adaptively refined grids
on the solution of the elliptical problem will be discussed in section 3.3.
A key aspect of this thesis is the geometry of Lagrangian vortex line segments

and geometric criteria for identifying finite-time singularities of the Euler equa-
tions. Section 3.4 will briefly present the diagnostic tools utilized to monitor
the Lagrangian and geometric properties of the considered flows.
Section 3.5 deals with the implications of conducting simulations on parallel

machines with thousands of cores. Here, I will give a short overview over the
scaling properties of racoon III and the extensions implemented to increase the
parallel performance.
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3.1. Numerical framework
The basis of all simulations presented in this work is the newly developed frame-
work racoon III. Its key feature is the integration of partial differential equations
on adaptive grids on massively parallel distributed computers. It allows for var-
ious integration and reconstruction schemes, staggered grids, modules to solve
elliptic problems and provides several diagnostic tools like passive tracer parti-
cles or vector field integral curves at runtime. It is based on racoon [33].
As racoon III is object-oriented, the implementation of the differential equa-

tion in question takes place when deriving a problem-specific implementation
from an abstract problem-class. Several callback functions, invoked by the main
loop on each node and the time-integration scheme, allow for data manipula-
tion, output and diagnostics. Also, the problem class is the only place where the
actual physical equations are located. It is, thus, easy to change the problem
formulation without the need of rewriting code distributed over several files.
Furthermore, the integration scheme, the interpolation method or other purely
numeric modules can be replaced without altering the physical equations.

3.1.1. Static grid and the block structure
The computational domain is covered by a Cartesian grid in memory. The values
at each grid point represent the value of a physical quantity at the center, face,
edge or corner of a cell, or the spatial average of this field across the cell (see
figure 3.1).
Data distribution across the processes is realized by using blocks of fixed size

n (typically from 8 to 64 cells in each direction) arranged on different levels L,
representing the degree of refinement. The 0th level consists of only one block,
stretching across the whole computational domain, while the subsequent levels
bisect the parent blocks in each dimension, resulting in an logical octree with
2L·d blocks on level L (d being the dimension of the domain). This leads to a
total of (n · 2L)d grid points in total.
Each block is surrounded with at least two boundary cells or ghost cells, as

pictured in figure 3.1, to ensure that each cell has two valid neighbors throughout
the computation. This is necessary for numerous computational steps such as
derivatives via finite differences or error smoothing. These “ghost cells” overlap
with the neighboring block and mirror its data. When necessary, all boundary
cells are synchronized via an exchange with their neighbors.

3.1.2. Adaptive mesh refinement
A key feature of racoon III is its ability to refine the grid adaptively. Many
problems in fluid dynamics and finite-time singularity simulations in particular
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Block Cell

∆xghost

cells

block width

Figure 3.1.: A block in racoon III has a fixed number of inner cells (red, here 8x8),
surrounded by boundary cells (green) that hold copies of the data of neighboring
cells. Every cell can store a value for each field, located either in the center, at the
boundaries, at the edges or at the vertices of the cell.

feature structures localized in space, while huge fractions of the domain remain
devoid of action. In such a scenario, for a given amount of computer memory, a
fixed mesh would under-resolve the crucial parts while wasting resources on the
less important ones. Most Euler blowup scenarios feature extremely localized
structures with steep gradients. Therefore, adaptive mesh refinement (AMR) is
of utmost importance for the work conducted in this thesis. Many design choices
in racoon III were explicitly made to facilitate adaptive mesh refinement.
Adaptive mesh refinement increases the locally available resolution, but comes

at the cost of additional computational overhead. It complicates the framework
in several ways. Most importantly, it restricts the choice of numerical schemes
to comparatively simple low order finite difference or finite volume variants.
A direct comparison to high accuracy pseudo-spectral simulation was made by
Grafke et al. [41] for the case of Euler equations. It was found that a resolution
approximately 1.3 times higher is needed to reach a comparable accuracy for
the adaptively refined code.
At the coarse-fine interfaces of refined grids, the framework relies on interpo-

lation to fill the corresponding ghost-cells with valid data. This may introduce
additional errors, especially if the number of derivatives acting upon the inter-
polated quantities is high. For the numerical scheme used throughout this work,
special arrangements have been made to minimize the influence of this error.
This will be presented in section 3.2.2.
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3.1.3. Refinement criteria
To decide which regions are to be refined, a certain criterion is tested period-
ically for each block. The criterion depends, for example, on the fields, their
derivatives or a more complicated formula. If the block is flagged as being
under-resolved, it is bisected into 2d child blocks that are redistributed among
the available nodes. The resolution of the parent block is thus effectively dou-
bled. The opposite happens for blocks that are over-resolved: 2d blocks are
merged into one, the resolution at this location is halved. With this procedure,
the grid is constantly changing and adapting to the simulation, allowing high
resolution at critical locations but not wasting any resources for the rest.

Figure 3.2.: Refinement criterion for the simulation of the Euler equations with
racoon III. Regions with a large value for ‖∇u‖ are resolved higher. Each square
represents a block with 163 cells. Shown is the absolute vorticity for a cross-section
of one vortex tube.

For the purposes of this work, different refinement criteria were considered:

(i) The absolute value of the vorticity, |ω(x, t)|,

(ii) the norm of the gradient of velocity, ‖∇u(x, t)‖,

(iii) a direct measurement of the discretization error by comparing finite differ-
ences at different mesh sizes (e.g. ∆x vs. 2∆x, Richardson-Extrapolation),

(iv) one of the above criteria to some exponent p, to sharpen or smoothen the
effects of mesh refinement.

(v) A fixed (non-adaptive) mesh refinement based on the known evolution of
the flow from previous simulations.
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For the production runs presented in this thesis, either a combination of (ii)
and (iv) (as shown in figure 3.2) was used, or a fixed mesh refinement (v) was
chosen. The former produces sharp adaptively refined grids which follow the
structures of the flow but may become complicated in time, while the latter
allows for faster and more robust refined meshes without the need for frequent
remeshing and redistribution.

3.1.4. Dynamic load balancing and the Hilbert curve

Figure 3.3.: Adaptive mesh refinement and dynamic load balancing. The workload
is distributed among different processors along a space-filling Hilbert curve.

Since communication between different nodes is the smallest bottleneck due
to limited bandwidth and high latency, it is advantageous to arrange the blocks
in a way that physically close blocks are located on the same node. Even if this
seems to be pretty straight-forward for normal grids, it poses a larger problem
for adaptive grids with different resolutions. In racoon III, blocks are distributed
along a space-filling Hilbert curve, as sketched in figure 3.3.
This ensures that proximate blocks are located on the same node even if the

grid is not fixed. Currently racoon III uses a slightly different approach, using
independent Hilbert curves for each level, since inter-level communication is
the most frequent type of communication for common problems. Every time
the grid changes when adapting to the current situation, the Hilbert curve is
recalculated, as is the workload for each node. If an imbalance is detected, the
blocks are redistributed along the curve, each node getting the same amount of
blocks (if possible).
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3.1.5. Time integration
Consider a discretized partial differential equation of the form

∂ty(x, t) = f(t, y), (3.1)

where f is a differential operator, consisting of spatial derivatives. To integrate
a partial differential equation of form (3.1) in time, a strong stability preserving
Runge-Kutta integrator according to [88] is used. Written in its general form,
the time integration in s steps is carried out via

yn+1 = yn + ∆t
s∑
i=1

biki,

where

ki = f(tn + ci∆t, yn +
i−1∑
j=1

aij∆tkj).

The constants aij, bi and ci specify the particular method and order of the
scheme. For racoon III, this method is implemented up to third order.
The time stepping ∆t is estimated periodically and problem-depending by

invoking a virtual method that calculates the maximal integration step for each
block independently and takes the minimum for the next time steps, adhering
the Courant-Friedrichs-Lewy (CFL) condition,

∆t ≤ ccfl
∆x
vmax

,

where ccfl is a real constant and vmax the maximum speed for the advancement
of information. For reasons of simplicity grid-adaptive time stepping is not
supported in racoon III, and ∆x refers to the grid spacing of the highest resolved
block in AMR simulations.

3.2. Numerical Schemes
The simulation of the three-dimensional Euler equations allows for a wide range
of numerical schemes to be applied. Not only is there a freedom of choice
for the underlying equation (e.g. the formulation in velocity as presented in
equation (2.10) or the formulation in vorticity like equation (2.13)), but also in
the applied numerical algorithms and the collocation of physical quantities in
the cell. Especially the non-local nature of the pressure or the incompressibility
condition may be enforced in different ways.
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3.2.1. Discretization
Since the problem at hand benefits considerably from utilizing locally refined
meshes, a finite difference approach is both the most flexible and efficient choice
in racoon III. Disadvantages from low spatial order are by far compensated by
the locally increased resolution. Nevertheless, a finite-difference approach leaves
the freedom to choose the discretization and the underlying equation. For this
thesis, several distinct schemes were implemented and compared against each
other: The Harlow-Welch scheme, the staggered vector-potential scheme and
the CWENO vector-potential scheme. These schemes will be introduced and
weighed against each other in the following paragraphs.

Harlow-Welch

The scheme of Harlow and Welch [46], or MAC-scheme, was introduced to sim-
ulate the two-dimensional Navier-Stokes equations with free surfaces. It was
the first scheme featuring a staggered grid for the velocity field components to
implement an exact projection to enforce the incompressibility condition.
In particular, as depicted in figure 3.4 (left), the Harlow-Welch scheme de-

fines the pressure in the center of a grid cell, while the velocity components are
located at the center of the cell faces. This is motivated by the fact that the
resulting Poisson equation for the elliptic part, both for the Navier-Stokes and
the Euler equations, couples all pressure unknowns. An unstaggered alignment,
in contrast, decomposes into several (uncoupled) subgrids. Since the solution of
the Poisson equation is only determined up to a constant, and this constant may
differ for each subgrid, spurious oscillations may be introduced in the unstag-
gered discretization. It is therefore reasonable to locate velocity and pressure for
the three-dimensional Euler equations in the same way as introduced by Harlow
and Welch.
Numerous authors have applied these staggered grid or projection methods

to the Navier-Stokes or Euler equations (see e.g. [17, 18]), usually by first
advancing the velocity field via the nonlinearity,

ũ← un + ∆tun · ∇un , (3.2)
without obeying the incompressibility condition and subsequently executing a
projection of the velocity to its solenoidal part,

un+1 ← Pũ , (3.3)
where P is the Leray-projection operator (see e.g. [26]). By defining the discrete
divergence operator D and discrete gradient operator G such that

Du(i,j,k) = ux (i+1,j,k) − ux (i,j,k)

∆x + uy (i,j+1,k) − uy (i,j,k)

∆y + uz (i,j,k+1) − uz (i,j,k)

∆z
(3.4)
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GΦ(i,j,k) = (Φ(i,j,k) − Φ(i−1,j,k)

∆x ,
Φ(i,j,k) − Φ(i,j−1,k)

∆y ,
Φ(i,j,k) − Φ(i,j,k−1)

∆z ) , (3.5)

the Hodge-decomposition for every discrete vector field u,

u = uD +G(Φ) with DuD = 0 (3.6)

is unique (for given boundary conditions) and the Leray-projection fulfills

D (Pu) = 0 (3.7)

exactly up to truncation error. This exact projection justifies the staggered
arrangement of the physical quantities. Furthermore, it is optimal in efficiency,
since it involves the solution of only one Poisson equation (as opposed to three
in the methods presented below).
A higher order variation of this scheme was introduced by Bell et al. [5] and

an improvement for adaptively refined grids was done by e.g. Minion [75], even
though for just two dimensions.
An additional advantage of schemes of this kind is their ability for a conserva-

tive formulation of the hydrodynamical equation. With a special reformulation
of the operatorsD and G at the coarse-fine interfaces (as shown in section 3.3.2),
these properties are even portable to adaptively refined grids.

x

y

z

ux

uy

uz

Φ

x

y

z

ux

uy

uz

Ax, ωx

Ax, ωx

Ay, ωy

Ay, ωy

Ay, ωy

Az, ωz

Az, ωz

Az, ωz

Figure 3.4.: Left: Staggered arrangement of velocity u and pressure correction field
Φ in the grid cells for the Harlow-Welch scheme. Right: Staggered arrangement
of vector potential A, velocity u and vorticity ω in the grid cells for the staggered
vector potential scheme.

Nevertheless, a significant disadvantage limits the use of the Harlow-Welch
projection schemes for the purposes considered in this work: Most of the criteria
for analyzing possible blowup scenarios for the incompressible Euler equations
(see section 4.1) require the evaluation of the vorticity ω, its direction, or even
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its derivative (e.g. ∇ξ, vortex line curvature κ, ∇ · ξ). Since in the considered
case the velocity u is the primary variable and derivatives are only second order
exact, these quantities would be unavailable. This effectively rules out the
Harlow-Welch projection methods for analysis via Lagrangian and geometric
criteria with adaptive mesh refinement.

Staggered grid vector-potential

Instead of integrating the Euler equations of the form (2.10) in time, it is rea-
sonable to take the vorticity evolution equation (2.13) as a basis for a numerical
scheme. In doing this, the main difficulty of the previous projection schemes
is circumvented: The primary variable of integration is now the vorticity ω in-
stead of the velocity u. There is considerable freedom in the exact form of the
nonlinear term:

∂tω = −∇× (u · ∇u) (3.8)
= ω · ∇u− u · ∇ω (3.9)
= Sω − u · ∇ω (3.10)
= ∇× (u× ω) (3.11)

All forms coincide in that they eliminate the pressure term from the equation.
The non-local (in space) nature of the incompressibility condition is instead
shifted to the calculation of the velocity field from the vorticity. A way to
accomplish this is the introduction of a vector potential A(x, t) for the velocity,
with

∇×A(x, t) = u(x, t), (3.12)

which is determined by the solution of three Poisson equations,

∆A(x, t) = −ω(x, t). (3.13)

The emerging gauge freedom of the vector potential is usually resolved by taking
the Coulomb-gauge,

∇ ·A(x, t) = 0, (3.14)

with corresponding boundary conditions.
Even though solving equation (3.13) requires three times the computational

cost of just calculating the projection (3.3), all inter-grid communication and
interpolation is done in the vorticity, which is a necessary condition for the
numerical treatment of geometric blowup criteria.
Collocation of the physical quantities A, u, ω is still arbitrary. For the stag-

gered grid vector potential formulation, the arrangement is chosen as depicted
in figure 3.4 (right): The vector potential A and the vorticity ω are located on
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Figure 3.5.: Collocation of the physical quantities for the staggered vector potential
scheme permits the definition of staggered rotation operators R+ (left) and R−

(right)

the edges of each cell, the velocity u on the face center. Now, define two discrete
curl-operators R+ and R− via(

R+v
)
x(i,j,k)

= vz(i,j+1,k) − vz(i,j,k)

∆y −
vy(i,j,k+1) − vy(i,j,k)

∆z (3.15)(
R−v

)
x(i,j,k)

= vz(i,j,k) − vz(i,j−1,k)

∆y −
vy(i,j,k) − vy(i,j,k−1)

∆z (3.16)

and permutations of x, y, z (compare figure 3.5).
These definitions render the discrete calculation of the velocity from the vector

potential, u = R+A, and the vorticity from the velocity, ω = R−u, exact in a
way that it fulfills the incompressibility condition Du = 0 up to the truncation
error (with D defined as above). Therefore, oscillations and grid decoupling
(checkerboard instability), as well as unnecessary interpolation, are minimized.
This formulation is advantageous for finite difference schemes, as long as the

grid is regular. For adaptively refined grids, the situation is somewhat more
complex: The control volume for a quantity on the edge of a cell located at
a coarse-fine interface has a considerably more intricate shape. For complex
grid arrangements in three space dimensions, an impractical number of special
cases has to be considered, further increased by the different collocation of
the separate components of each vector field. This is even more severe in the
adaptive multigrid solver. In the case of adaptively refined simulations of the
Euler equations, this proved to be a fatal shortcoming of this type of scheme,
as the implementation becomes far too complex.

CWENO vector-potential

Another way to discretize the vorticity formulation (2.13) is to arrange all phys-
ical quantities in a cell-centered fashion. This allows for the familiar use of the
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multigrid algorithm on adaptive grids and does not introduce difficulties con-
cerning the definition of control volumes at coarse-fine interfaces. Again, the
vorticity ω is the primary variable. Since the advantages of the sophisticated
staggering of the staggered vector potential scheme is sacrificed in order to keep
the adaptive mesh refinement tractable, the resulting cell-centered discretiza-
tion may introduce spurious oscillations due to grid decoupling (checkerboard
instability).
For the CWENO vector-potential scheme this disadvantage is overcome by

instead integrating the equation

∂tω = −∇× (∇ (u⊗ u)) , (3.17)

where “⊗” denotes the dyadic product. The term ∇ (u⊗ u) is calculated, in-
spired by finite volume schemes, with a Kurganov-Tadmor [68] scheme in combi-
nation with a CWENO-reconstruction [67] of the velocity u to the cell interfaces,
which was already implemented in racoon. This permits a third-order accuracy
in smooth regions and effectively reduces spurious oscillations in regions with
steep gradients. As a result, grid decoupling is circumvented for the cell-centered
formulation at the price of a slightly increased numerical dissipation in the pres-
ence of steep gradients. Numerical tests have shown that this effect is less severe
for the considered case of the Euler equations than a stabilization with the help
of artificial viscosity.
In total, the scheme, as presented, consists of several steps. Starting with an

approximation to the vorticity ωn at time tn,

1. calculate the vector potential An from the vorticity ωn via

An ← −∆−1ωn, (3.18)

where the inverse Laplacian is computed via the refined mesh multigrid
algorithm presented in section 3.3,

2. compute the velocity un from the vector potential An,

un ← ∇×An, (3.19)

3. compute the change of impulse in each cell via summation of the fluxes
through each interface,

Nn ← ∇ (un ⊗ un) (3.20)

with the help of the CWENO-reconstruction,

4. apply the nonlinearity to get a new approximation for the vorticity ωn+1,

ωn+1 ← ωn −∆t (∇×Nn) . (3.21)
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This sequence of steps comprises one Euler-forward step in time. It establishes
the building block for one Runge-Kutta sub-step as presented in section 3.1.5
to achieve third order accuracy in time.
In comparison to the schemes presented before, this approach offers the ad-

vantage of featuring the vorticity as the primary variable, which is a necessary
condition for advanced diagnostics of the vorticity field. In addition, it is read-
ily transferable to adaptively refined meshes, an indispensable feature for the
extremely localized nature of possibly singular configurations. It was therefore
the scheme of choice for all production simulations presented in this thesis.

3.2.2. Overlap
As lined out in section 3.1.2, communication between blocks is realized with
the use of ghost cells. The data stored in the ghost cells is used to calculate
finite differences and has to be updated whenever the original data is modified.
This update necessarily includes interpolation as soon as ghost cells overlap
data of different resolution in an adaptively refined simulation. Since the above
presented vector potential schemes require a huge number of differentiations of
the vector potential, the requirements for the order of the ghost cell interpolation
are quite severe.

Ac

ωc

Af

ωf

coarse

fine

Figure 3.6.: Overlapping grids at coarse-fine interfaces of adaptively refined meshes.
The vector potential is valid on the blue part of the grid, while the vorticity is
trusted only in the region highlighted in red. Thus, no derivative has to be calcu-
lated for an interpolated quantity.

To counter this, a kind of overlapping grids was introduced at the coarse-fine
interfaces of the adaptively refined grids. As shown in figure 3.6, the physical
equation is integrated at all levels of resolution in parallel. At the coarse-fine
interfaces of refined grids, different physical quantities have different areas of
validity: The vector potential approximation is assumed to be correct on the
blue marked cells while the updated vorticity is only trusted on the red marked
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cells. By doing this, no derivative has to be calculated for an interpolated
quantity.
After each sub-step, the original refined grid for the vorticity is recovered via

interpolation. This means in conclusion that interpolated data is only consid-
ered in the computation as part of the right-hand-side of the Poisson equation.
Combining this overlap with the CWENO vector potential scheme, the vorticity
ω is not only the primary variable in the time integration, but also is the only
quantity to be interpolated in the course of the simulation. The interpolated
values only enter the computation as source terms for the calculation of the vec-
tor potential. The overall scheme is therefore very robust against disturbance
introduced by the varying grid spacing.

3.3. Multigrid on refined meshes
All schemes presented above need at some point the solution of the three-
dimensional Poisson equation

∆φ = ρ (3.22)

on a domain Ω, with a potential φ and a source term ρ. This was accomplished
with a multigrid method, which is regarded as the fastest numerical method
for the solution of elliptic partial differential equations in general. Even if a
wide range of problems can be solved efficiently with the multigrid approach,
only the Poisson equation is of any relevance to the vorticity- or staggered grid
formulations. An implementation of the multigrid algorithm was written for
the framework racoon III. Technical details will be explained in appendix B for
equally spaced grids.
In the considered case, the grid is adaptively refined to match the underlying

physical problem. One therefore has to extend the presented algorithm to such
a more complex grid structure. At its core, the multigrid algorithm is capable
of respecting such a grid structure by just smoothing, restricting and correcting
the refined regions for incomplete levels and ignoring the non-refined parts.
Nevertheless two notable problems remain. Their solutions will be presented in
the following paragraphs.

3.3.1. Full approximation scheme
On all but the finest level the basic multigrid algorithm, as presented in appendix
B, solves defect equations (B.4) instead of the original equation (B.1). Because
of that, partially refined levels end up with an approximation to the error instead
of an approximation to the potential. To overcome this technical difficulty, the
Full Approximation Scheme (FAS) was used. Originally designed for nonlinear
equations its purpose in this context lies in the fact that the data held on all
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levels is the true potential φ instead of the defect r. Since for adaptively refined
meshes the multigrid algorithm locally features coarser grids, the correct solution
already is present for all different resolutions.
Details and a formal derivation of the full approximation scheme is given in

section 5.3.4 of Trottenberg et al. [91]

3.3.2. Flux conservation across AMR interfaces
In finite volume formulation, the multigrid algorithm for refined meshes is not
conservative across interfaces between coarse and fine grids. This introduces
spurious sources terms on these interfaces, which results in a discontinuity in
the gradient of the potential and consequentially in a non-vanishing divergence
if the multigrid is used for e.g. a projection method. The following paragraph
describes how this problem was overcome via a special reformulation in fluxes
and a subsequent flux-fix after each smoothing step for the partially refined
levels.
According to a (second order) finite volume formulation, physical quantities

are interpreted as cell-averages, represented by values located at the center of
each cell. The setup near a coarse-fine interface is as depicted in figure 3.7.

ϕc

ϕn

ϕs

ϕw ϕe

fn

fs

fw fe

F

Φn

Φs

Figure 3.7.: A coarse-fine-interface with differing fluxes on the fine and coarse grid.
Flux conservation dictates a Neumann boundary condition for the fine grid region
to agree with the coarse grid fluxes through the interface.

Here, ϕn, ϕs, ϕw and ϕe are meant to be values of the potential located in the
cell centers on the fine grid, placed around the cell containing ϕc. The fluxes
through the interfaces on the fine grid, defined by

f(x) = ∇φ(x) (3.23)
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are located at the cell interfaces and denoted by fn, fs, fw and fe, respectively.
Uppercase letters Φ and F are used for the same quantities on the coarse grid.
To ensure conservativity, we need to have equal approximations to the flux on
both grid levels,

fs
!= F . (3.24)

Since

F = 1
2∆y (Φn − Φs) (3.25)

fs = 1
∆y (ϕc − ϕs) (3.26)

we get

ϕs = ϕc −
1
2(Φn − Φs) (3.27)

= ϕc −∆yF . (3.28)

This may be seen as an equation determining the choice of the ghost-cell value
ϕs to obtain conservativity in fluxes across the coarse-fine interface, which is to
be used instead of interpolation when filling the ghost-cells with data.
Since the ghost-cell value ϕs depends on ϕc, it has to be reset (recalculated)

each time ϕc changes, i.e. after each smoothing iteration. If we store the coarse
flux F = 1

2∆y (Φn − Φs) once, we just have to subtract the “net-flux” ∆yF
from the center value. This treatment therefore results in Neumann-boundary
conditions on the interior refined grid interfaces by forcing the fine grid fluxes
to the value of the underlying coarse grid flux.

Position Order Dirichlet Order Neumann
L∞ 0.987 1.995
Interface 0.987 1.974
Center 1.990 2.060

Table 3.1.: Measured order for bilinear interpolation of Dirichlet boundaries in the
ghost cells versus flux conservative interpolation of Neumann boundaries in the
ghost cells.

A direct comparison of a multigrid implementation with Neumann boundary
data in comparison to the standard treatment of Dirichlet boundary data in
the ghost cells shows the necessity of this special treatment. With Dirichlet
boundary data in the ghost cells, artificial source terms are introduced at the
coarse-fine interfaces. As depicted in figure 3.8 for a test scenario, this can
lead to discontinuities in the first derivative of the solution. When ensuring
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Figure 3.8.: Bilinear interpolation at coarse-fine interfaces for a test problem. The
solution (left) exhibits artificial (unphysical) sources at the interfaces which lead
to a discontinuity of the derivative across the interface, as visible in the cut in
x-direction (right).
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Figure 3.9.: Neumann conditions at coarse-fine interfaces for the same test problem.
The artificial sources of the solution (left) at the interfaces have vanished, the
derivative is continuous in the cut in x-direction (right).
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flux-conservative interfaces, as visible in figure 3.9, the gradient of the potential
remains smooth.
For a more quantitative comparison, the error in L∞-norm, the error at the

interface and in the center of the fine region Ωf are compared at different res-
olutions n for both methods. The measured orders are listed in table 3.1. The
spurious source terms at the interface lower the overall accuracy of the stan-
dard treatment to first order, while the flux conservative interpolation of the
Neumann boundaries restores the overall accuracy to second order.

3.4. Diagnostics
A fundamental part of this thesis is the numerical analysis of Euler flows with
regard to their geometrical properties. As will be presented in detail in chapters
4 and 5, this includes the calculation of the flow map X(α, t) to observe the
Lagrangian evolution of physical quantities, such as pressure derivatives and the
knowledge of the back-to-labels map A(x, t) to compute the origin of Lagrangian
fluid elements. Furthermore, several blowup criteria involve the integration
of vortex lines (as introduced in section 2.2.4) and the computation of their
geometric properties, such as their length or curvature.
Monitoring all these quantities on-the-fly in a simulation poses a challenge

for the diagnostics. The following paragraphs will outline the technical and
numerical details associated with the measurement of Lagrangian and geometric
quantities.

3.4.1. Tracer particles
Knowledge of the flow map X(α, t) and its inverse A(x, t) is gained in the
numerical simulation with the help of passive tracer particles. These passive
tracer particles x(t) obey the equation

x(0) = x0 (3.29)
ẋ(t) = u(x(t), t) (3.30)

without influencing the flow in any way. In racoon III, this is implemented using
exactly the same integration method that is in use for the time integration of the
field data (a third-order strong stability preserving Runge-Kutta by [88]). To
ensure the correct coupling between the velocity field and the particle position,
the particle positions are updated using the temporary field data from a Runge-
Kutta sub-step. Interpolating the field data to the particle positions is achieved
using a tri-linear interpolation.
The back-to-labels map A(x, t) is implemented in a rather cost-intensive way:

A precursory simulation is run with a huge number of tracer particles. Using
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Figure 3.10.: Sketch of the geometric diagnostics introduced into racoon III. Left:
Back-to-labels map. Origin of the fluid elements that will add up to a cuboid
around the maximum vorticity at late time. Right: Lagrangian evolution of a
vortex line at different times.

this dataset, positions at late times can be mapped back to their origin. In a
subsequent production run with identical parameters, the fluid volume that will
arrive at the target point at later times is known from the beginning. Figure
3.10 (left) depicts this strategy: Shown is every 10000th fluid particle that will
arrive in a cuboid around the position of maximum vorticity at late times.

3.4.2. Field lines
The computation of vortex lines looks similar to the advection of tracer particles.
As defined in section 2.2.4, a vortex line is a curve c(s) that fulfills the equation

c(0) = x0 (3.31)
ċ(t) = ω(c(t), t) . (3.32)

For applicability, the vorticity direction vector field ξ(c(t), t) can be used instead
of the vorticity ω(c(t), t) to obtain a curve c(s) parametrized by arc length. The
integration is carried out using a third-order Runge-Kutta integrator in space,
interpolation to the field line is again tri-linear. Figure 3.10 (right) pictures the
Lagrangian evolution of a vortex line for the vortex dodecapole flow for different
times.
When having obtained a curve c(s), its curvature could in principle be com-

puted by
κn = c̈(s) . (3.33)
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This approach, while analytically correct, relies on the second derivative of the
integral curve. This may be omitted by realizing

κn = ∂ċ(s)
∂s

(3.34)

= ∂ξ

∂s
(3.35)

= (ξ · ∇)ξ . (3.36)

As a result, the curvature of vortex lines is available as a vector field in the
whole domain. Its absolute value can be interpolated to the curve at any point
to get an approximation to the vortex line curvature. As a side effect, quantities
like the maximum curvature of all vortex lines are in reach without having to
integrate any vortex line at all.

3.5. Parallelization and high performance
computing

Due to the serious requirements in terms of resolution, the simulations conducted
in the context of this work need a large amount of memory. To comply with this
demand, the framework racoon allows for the usage of multiple interconnected
machines in parallel. The employment of adaptively refined grids considerably
complicates the process of parallelization, which is countered by the dynamic
load balancing technique presented in section 3.1.4.
Yet, the massive number of processors that is necessary to reach ever higher

resolutions is connected with a number of problems that exceed the scope of
simple parallel programming, most notably the metadata problem, parallel data
output, parallel scaling and the parallelization of the elliptic solver. The follow-
ing sections will briefly comment on the encountered problems and the choice of
solutions in racoon to fulfill the requirements of high performance computing.

3.5.1. Metadata and the hybrid approach
For small problems, parallel computing is achieved by having multiple cores
act on the same memory (symmetric multiprocessor, SMP). In contrast to this,
massively parallel computers consist of a large number of independent compute
nodes (massively parallel processors, MPP) and rely on an interconnecting net-
work for communication. Modern supercomputers usually combine SMP and
MPP techniques by providing a large number of nodes with more than one core
each.
Even though in the process of parallelization the bulk of computational data

is split among the processors to be operated on in parallel, certain information
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have to be stored by each process. The largest portion of this metadata contains
information about the overall grid structure. For boundary exchanges, tracer
particle communication and rebalancing on refinement, each processor relies on
this data to determine the target process to communicate with. For parallel
computing with hundreds of processors, this metadata is small (≈ 1MB) com-
pared to the actual field-data, but as the number of blocks increases, it grows
to a considerable portion of the available system memory.
To counter this problem, racoon III was updated to employ a hybrid approach

for the memory layout. Instead of spawning one process per core, only one
process per node is generated. This process forks during the computationally
expensive parts of the calculation to utilize all cores of the node. With this
method, the metadata is stored only once per node instead of once per core and
a larger overall number of blocks is possible.

3.5.2. Parallel I/O
When the number of independent processes exceeds several thousand, the input
and output of field data becomes more complex. It is no longer a possibility
that each process dumps his own fragment of the computational domain in a
separate file. In most file-systems (even parallel ones), file creation is a serial
process and the simultaneous creation of several thousand files may take several
minutes. Furthermore, the handling of thousands of files in post-processing is a
time consuming process.
In principle, the MPI-standard defines methods for parallel I/O operations.

Yet, in racoon, the distribution of data across the memory is relatively complex
due to the logical octree and the Hilbert-curve for load balancing. A straightfor-
ward implementation of MPIIO would rely on many separate collective calls for
MPIIO and therefore not increase the performance. To find the optimal strat-
egy, several different approaches for parallel I/O have been compared. This
includes:

PLAIN Each process writes its data into a single, separate file. This was the
previously used system in racoon.

MPI_WRITE Only one file is created for all processes. Each process writes its
portion via MPI_File_write in parallel.

MPI_WRITE_ALL Again, only one file is created. The parallel writing is imple-
mented via MPI_File_write_all as a collective operation.

PSETS Via “Psets”, each I/O node, responsible for 512 compute nodes, creates
a file. Output is realized in parallel across processes sharing the same I/O
node.
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With these competing methods for parallel I/O, tests have been conducted
for different cases, to simulate production behavior:

1. Each process writes a large, continuous chunk of data (8MB per process).
This emulates output of field data for a coherent distribution in memory.

2. Each process writes a small, continuous chunk of data (128 Byte). This
test mimics the output of small diagnostic data like e.g. tracer particles.

3. Each process writes a large amount of data (16MB), but segmented into
16 or 256 parts. This approximates the behavior of racoon, since the field
data is distributed among different blocks.

#core 2048 4096 8192 16384
Duration (s)

PLAIN 137.5 235.2 288 832
HPC-IO 100.9 57.6 50.3 37.5

Bandwidth (MB/s)
PLAIN 596.5 348.7 284.7 98.58
HPC-IO 812.9 1423.9 1630.6 2187.12

Table 3.2.: Hard scaling of parallel I/O for racoon in a production run with 10243

grid points (82017MB of data). The improved parallel output method outperforms
the old method by a factor of ≈ 20.

#core 64 512 4096 16384 32768
resolution 2563 5123 10243 10243 20483

data (MB) 1285 10252 82017 82017 655457
Duration(s)

PLAIN 7.5 25 235.2 832 –
HPC-IO 6.6 16.5 57.6 37.5 169

Bandwidth (MB/s)
PLAIN 171.3 410.08 348.7 98.58 –
HPC-IO 194.7 621.33 1423.9 2187.12 3869.3

Table 3.3.: Weak scaling of parallel I/O for racoon in a production run. Resolutions
of 20483 grid points are possible. The peak bandwidth was measured at ≈ 3.9GB/s.

These tests were performed with 64 to 32768 cores (1 to 64 I/O nodes on
JUGENE). The results can be summarized as follows:
• For large datasets, the PSET-method performs and scales well. Collective

MPI_WRITE by far outperforms the non-collective variant. The PLAIN-
method works surprisingly well.
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• For small datasets, PSET and collective MPIIO still perform best. The
PLAIN-method cannot compete due to the large overhead of creating a
huge number of files synchronously.

• For fragmented data, both collective and standard MPIIO performs poorly,
due to large overhead of calling the MPI-routines. The PSET performs well
again.

Using these results, the high performance I/O for racoon III was designed. Even
though the PSET-methods work best in all test cases, its implementation would
mean significant programming effort. Furthermore, its implementation is ma-
chine specific and available only for IBM BlueGene machines. The alternative
solution therefore was to buffer the data before the output operation and then
output it as a continuous block via collective MPIIO. The increase in perfor-
mance for production runs is depicted in tables 3.2 and 3.3. Instead of a decrease
in bandwidth for a larger number of cores, the output now scales close to op-
timal. For 16384 cores, a speedup of factor 22 is achieved. Higher numbers of
processors, which were unreachable before, now scale well. A peak bandwidth
of 3.9 GB/s is reached.

3.5.3. Scaling
Combining the above mentioned improvements for parallel computing, the over-
all scaling for racoon is depicted in figure 3.11. It is measured on the BlueGene/P
machine at Forschungszentrum Jülich with a total number of 294912 cores. For
a combination of weak and hard scaling, the performance is close to linear up
to 262144 cores, the maximum number tested. Note, however, that this scaling
is just valid for hyperbolic problems. Extensions for the elliptic part and their
impact on parallel scaling are discussed in the following section.

3.5.4. Parallelization and multigrid
Special care has to be taken when parallelizing elliptical solvers in the context
of the framework racoon. The elliptical problems encountered when simulating
the Euler equations (velocity projection or calculation of the vector potential)
are more difficult to parallelize than the hyperbolic advection term due to their
inherent non-local nature. For each timestep, information travels only fractions
of the grid spacing in the advection step, but through the whole domain when
enforcing the incompressibility. This behavior is necessarily reflected by the
demands on communication between processes in massively parallel simulations.
A central part of the multigrid algorithm presented in section 3.3 is the ex-

change of information between different grid levels. Since, due to arbitrary load
balancing on adaptively refined grids, blocks of different levels may be stored
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core.
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on different processes, inter-grid communication may occur in the prolongation
and restriction phases of the algorithm. Quite in the contrast to the hyperbolic
part, this implies exchange of entire block volumes instead of just boundary
data.
Furthermore, in the current implementation of multigrid in racoon, the coars-

est level is formed by the coarsest block, spanning the entire domain. On this
block (usually 163 grid cells), the Poisson equation is solved via Gauss-Seidel
iterations. Since only one process gets to handle the coarsest block, this part
of the algorithm does not parallelize (with the exception of the SMP as part
of the hybrid approach presented in the previous section). This could be coun-
tered by decreasing the blocksize, yet smaller blocksizes result in a higher block
count, which in turn increases the metadata. Hence, a careful adjustment of the
blocksize has to be made, which will result in suboptimal scaling properties in
comparison to the purely hyperbolic case.
Figure 3.12 shows the scaling behavior of racoon III with multigrid algorithm,

obtained with the IBM BlueGene/P of Forschungszentrum Jülich. The scaling
is satisfying up to at least 131072 cores, even though efficiency begins to drop
at the highest tested number of processes.

3.6. Conclusion
A considerable amount of programming was necessary to modify the presented
framework to be fit to perform massively parallel high resolution simulations of
the Euler equation. This includes numerical issues such as a discretization and
a scheme which allow for the efficient use of adaptively refined grids without
sacrificing accuracy in the primary variable, or the modification of the multi-
grid algorithm to produce reliable results on refined meshes. New diagnostics
had to be developed, in particular Lagrangian tracer particles to measure the
flow map, as well as vortex line integration and the computation of their cur-
vature, length and line integral quantities. Furthermore, technical issues had to
be solved, most notably the extreme demands posed by the massively parallel
computation, concerning both scalability issues as well as parallel output. Es-
pecially the resulting parallel adaptive multigrid algorithm shows an impressive
performance.
The resulting program for integrating the Euler equations has been used for

every production simulation presented in this work. It was run on the IBM
BlueGene/P machine “JUGENE” of Forschungszentrum Jülich made available
through project hbo35
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4. Analysis of Finite-time
Singularities

In chapter 2, the Euler equations were defined and their physical properties
were discussed. This chapter is devoted to the question: Given initial conditions
u0(x) of some regularity, does there exist a unique regular solution u(x, t) to
the Euler equations for all times, or does the solution become singular in finite
time? Up to now, this question is not answered. Nevertheless, there has been
a lot of progress in identifying the mechanisms that may lead to a finite-time
singularity. From this knowledge, criteria are developed to expose necessary
conditions for the formation of a singularity. Some of these will be presented
in this chapter, with a focus on criteria whose assumptions are verifiable by
numerical computations.
First, in section 4.1, mathematical preliminaries are given for analyzing Eu-

ler flows. Analytical results regarding criteria for the formation of finite-time
singularities are presented and fundamental concepts such as the notion of en-
ergy estimates are introduced. From here, classical results like the well-known
Beale-Kato-Majda criterion for vorticity accumulation are a small step.
Section 4.2 focuses on Lagrangian and geometric criteria, which provide an-

alytical results regarding the blowup of the Euler equations with the help of
geometrical properties of the flow. This mainly focuses on the regularity of
the direction of vortex lines, the breakdown of their curvature or their smooth
alignment. The assumptions of these criteria are analyzed with respect to their
applicability to numerical simulations.

4.1. Existence of Solutions

4.1.1. Energy methods
A classic approach to obtaining estimates for partial differential equations is via
energy methods. Energy methods derive their name from the a priori bound on
‖u‖L2 , which is equivalent to the conservation of kinetic energy introduced in
section 2.2.3. In a similar way, by defining other Sobolev-norms of the velocity
or compound objects, other a priori estimates are gained which may be used to
serve as starting points for further proofs.
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4. Analysis of Finite-time Singularities

Energy methods can be used to prove the existence of global solutions for
the two dimensional Euler equations (established by Kato [50]) as well as the
local in time existence of solutions for the three-dimensional Euler equations
(e.g. [34] in Eulerian formulation, [51] in Lagrangian formulation, [24] in active
vector formulation). This is done for example by first proving the existence
of approximate solutions via a mollification procedure and proving adequate
energy estimates for these solutions, then passing to the limit of solutions to
the actual, non-approximate equation. The convergence to a limiting solution
is possible at least on the time interval [0, T ], where T depends on the initial
conditions only. More precisely, following [72], the resulting statement is:
For initial conditions u0 ∈ Hm, ∇·u0 = 0, m ≥ 7

2 , there exists a time T with
the rough upper bound

T ≤ 1
c‖u0‖Hm

, (4.1)

such that there exists a unique solution to the Euler equations

u ∈ C([0, T ];C2(R3)) ∩ C1([0, T ];C(R3)) . (4.2)

Further control over the Hm-norm of the velocity would then allow the con-
tinuation in time of the above solution. Most of the blowup criteria presented
in the following sections are based on this result.
Now, suppose that for a given initial condition the existence of a smooth

solution global in time is known. Energy methods can then be used to prove the
uniqueness of this solution. This is done by considering two different solutions
u1 and u2 and taking the L2-norm of the difference of their evolution equations.
The resulting energy identity can be bounded via Grönwall’s lemma to obtain
an upper bound on ‖u2 − u1‖L2 in time. This bound is equal to zero if the
initial difference ‖ (u2 − u1)|t=0 ‖L2 is zero and the solution remains smooth.
Therefore, globally smooth solutions to the Euler equation are unique.

4.1.2. Beale-Kato-Majda criterion
By means of the energy methods presented in section 4.1.1 it can be shown
that the three-dimensional Euler equations possess unique strong solutions u ∈
C([0, T ];C2(R3)) ∩ C1([0, T ];C(R3)) locally in time for given initial conditions,

u0 ∈ {u ∈ Hm | ∇ · u = 0}, (4.3)

for m ≥ 7
2 and may be continued in time provided that the Hm-norm of the

velocity remains bounded.
An important turning point in the history of analysis for the three-dimensional

Euler equations was the proof of a connection between smooth global solutions
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and the accumulation of vorticity by Beale et al. [3]. This was achieved by
linking the supremum of the Hm-norm of the velocity on a time interval [0, T ]
to an a priori bound on the L1([0, T ], L∞(R3))-norm of vorticity and deducing
global in time existence of smooth solutions. More specific, the theorem states:
Beale-Kato-Majda (BKM): If for any T > 0 there exists a constant C

such that the vorticity ω = ∇× u fulfills
T∫

0

‖ω(·, t)‖L∞dt ≤ C, (4.4)

then u is a strong global solution to the three-dimensional Euler equations.
If on the other hand T is the maximal time of existence of a strong solution

to the Euler equations, then
T∫

0

‖ω(·, t)‖L∞dt =∞. (4.5)

For the three-dimensional Euler equations, this criterion is one of the sharpest
results known. A similar result has been proven concerning the blowup of the
strain rate instead of the vorticity by Ponce [85].
As these results give a clear distinction, at least in principle, between a singu-

lar development and a mere fast accumulation of vorticity, it has been applied
a lot in the context of numerical simulations of the Euler equations. In practice
this means: A measured growth of the maximum vorticity in time of

‖ω(·, t)‖L∞ ≈ 1
(T − t)γ , (4.6)

for a supposed blowup time T and some exponent γ specifying the growth rate
leads to a finite-time singularity at time t = T only if γ ≥ 1. For γ < 1 the
observed accumulation of vorticity has to be a numerical artifact. The critical
case, γ = 1, seems to be the common case in most numerical simulations.
Given the evolution of the maximum vorticity in time, Ω(t) = ‖ω(·, t)‖L∞ ,

acquired from a numerical simulation, and making the assumption γ = 1, a plot
of 1/Ω(t) against time t can be compared to a line and extrapolated. The zero-
crossing of the line gives an estimate for the time T of the blowup. Curves of
1/Ω(t) that agree well with this behavior have been taken as numerical evidence
for a finite-time singularity (e.g. Bell and Marcus [4], Grauer et al. [43], Kerr
[52], Orlandi and Carnevale [80]).
It is well established in literature (see e.g. Gibbon [39] for an overview) that

both a huge amount of resolution of the region of maximum vorticity as well as
a simulation up to very close to the singular time are necessary to distinguish
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between a critical accumulation and just a “very fast” accumulation of Ω(t).
Because of that, much care is required when applying this theorem to numerical
simulations.

4.2. Geometric and Lagrangian blowup criteria

The above presented results for the development of a finite-time Euler singularity
have in common that they focus on global features (such as certain norms of
the velocity or the vorticity fields) or on point-wise Eulerian features (such as
Ω(t)) of the flow. This comes at the disadvantage of neglecting the structures
and physical mechanisms of the flow evolution. A strategy to overcome such
shortcomings was established by focusing more on geometrical properties and
flow structures, such as vortex tubes or vortex lines. Starting with the works
of Constantin [23], Constantin et al. [28], Cordoba and Fefferman [29], some
of these “geometric” criteria (e.g. [30, 38, 40]) have reached a phase where
they allow direct verification of their assumptions with the help of numerical
simulations.
The following section will introduce these developments, starting with results

concerning the regularity of the direction of vorticity and the twisting and bend-
ing of vortex tubes. Special focus is placed on the criteria presented by Deng
et al. [30, 31], as the assumptions are in close reach for numerical simulations.
They examine the Lagrangian evolution of vortex line segments and formulate
a combined bound on velocity blowup and vortex segment collapse.

4.2.1. Classical geometric blowup criteria

One of the consequences of the BKM theorem introduced in section 4.1.2 is
the trivial consequence that no blowup can occur for the two dimensional Eu-
ler equations. Since the vorticity ω(x, t) is bounded by the initial conditions
‖ω0‖L∞ for all times, a critical accumulation such as needed in (4.5) is impos-
sible.
This is a direct consequence of the vorticity pointing out of the plane of

motion, therefore having the vortex-stretching term ω · ∇u vanish everywhere.
This may be interpreted as a motivation to focus on the behavior of the direction
of vorticity, ξ = ω/|ω| in the three-dimensional case. For 2D, ξ is a constant
in space and time (modulo sign). In 3D, the consequences of the regularity of ξ
on the growth-rate of vorticity and ultimately of the applicability of BKM can
be precisely stated.
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Smoothly directed vorticity

For the Euler equations, this was introduced by Constantin et al. [28]. They
state, roughly, that for a smoothly directed vorticity in an O(1)-region there
may be no blowup in finite time as long as the velocity remains finite in this
region.
More specific, for a solution to the Euler equation that remains smooth for

all 0 ≤ t < T consider a set W0 ⊂ R3 of points of non-vanishing vorticity and
its Lagrangian image

Wt = {X(q, t)|q ∈ W0} . (4.7)
This region is said to be smoothly directed, if there is a ρ > 0 and 0 < r < ρ

2
such that

• the direction of vorticity is well behaved around the considered region,

lim
t→T

sup
q∈W0

t∫
0

‖∇ξ(·, t)‖L∞(B4ρ(X(q,t)))dt <∞, (4.8)

• the region is large enough to capture the local intensification of vorticity,

sup
B3r(Wt)

|ω(x, t)| ≤ m sup
Br(Wt)

|ω(x, t)| (4.9)

for m ≥ 0 constant and

• the velocity is bounded around the considered region,

sup
B4ρ(Wt)

|u(x, t)| ≤ U (4.10)

for U ≥ 0 constant.

In a smoothly directed region, the vorticity remains bounded in time and no
blowup can exist.
Even though this criterion takes into account the local structure of the flow

and follows the evolution of vortex lines, the (global) bound on the velocity
makes this theorem hard to apply in practice. Numerical simulations of the
Euler equations give no evidence for the velocity to be uniformly bounded in
time.

Twisting and bending of vortex tubes

This restriction on the velocity field is weakened in a similar criterion by Cordoba
and Fefferman [29]. They consider vortex tubes, as introduced in section 2.2.4,
with some properties concerning their regularity and a surrounding O(1) region
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Q of the flow. From this it is possible to deduce, with the help of a milder
assumption on the surrounding velocity, that the vortex tube cannot reach zero
thickness in finite time. In detail they state:
Cordoba-Fefferman: Let Wt ⊂ Q be a regular tube that moves with the

flow. If
T∫

0

sup
x∈Q
|u(x, t)|dt <∞ (4.11)

then the tube cannot shrink to zero thickness,

lim inf
t→T

Vol(Wt) > 0. (4.12)

Even though the velocity field is no longer required to be uniformly bounded
in time, the notion of “regular tube” of O(1) length is too restricting, compared
to the experiences of numerical simulations.

4.2.2. Regularity of vorticity direction along a vortex line
It has been shown in section 2.2.4 that for the three-dimensional Euler equa-
tions vortex lines, defined as integral curves of the vorticity direction field, are
transported with the flow. As a consequence, two points x and y on the same
vortex line c(s) stay on the same vortex line for all times.
It was furthermore shown, as a direct implication of the solenoidality of the

vorticity vector field, that the vorticity flux through a vortex tube is the same
for each cross-section.
These two arguments may be combined to get a differential notion of the

connection between the vorticity at two different points on the same vortex
line. Starting at the solenoidality of ω,

0 = ∇ · ω = ∇ · (ξ |ω|) (4.13)
= (ξ · ∇)|ω|+ |ω|(∇ · ξ) (4.14)

which results in
(ξ · ∇)|ω| = −|ω|(∇ · ξ) . (4.15)

Since for a vortex line c(s) it holds by definition that ċ(s) = ξ(c(s)), we have
ξ ·∇ ≡ ∂/∂s, where ∂/∂s is the partial derivative in direction of the vortex line.
Thus, we arrive at the ODE for |ω| along a vortex line:

∂|ω|
∂s

= −|ω|(∇ · ξ) (4.16)
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which yields, upon integration,

|ω(y(t), t)| = |ω(x(t), t)| exp

− y(t)∫
x(t)

∇ · ξds

 . (4.17)

Paraphrased, this means: The vorticity at two different points on the same
vortex line is connected by the amount of converging or diverging of neighboring
vortex lines along their interconnecting path. The more violent vortex lines
converge around a vortex line, the faster the vorticity grows along that line.
This finding was connected with BKM by Deng et al. [30] to formulate a ge-

ometric blowup criterion. It is obvious from equation (4.17) that the maximum
vorticity Ω(t) at a given time t can be estimated by the vorticity on its vortex
line, as long as ∇ · ξ remains finite. In detail this means:
Deng-Hou-Yu theorem 1: Let x(t) be a family of points such that for

some c0 > 0 it holds |ω(x(t), t)| > c0Ω(t). Assume that for all t ∈ [0, T ) there
is another point y(t) on the same vortex line as x(t), such that the direction of
vorticity ξ(x, t) = ω(x, t)/|ω(x, t)| along the vortex line c(s) between x(t) and
y(t) is well-defined. If we further assume that

∣∣∣∣∣∣∣
y(t)∫

x(t)

(∇ · ξ) (c(s), t) ds

∣∣∣∣∣∣∣ ≤ C (4.18)

for some absolute constant C, and

T∫
0

|ω(y(t), t)| dt <∞; , (4.19)

then there will be no blowup up to time T .
It is immediately clear how this criterion can be applied to numerical simu-

lations. If the maximum vorticity Ω(t) exhibits fast growth in time for which
it is hard to decide whether it is a finite-time blowup compatible with BKM,
instead one could monitor the vorticity outside the critical region, but on the
same vortex line. If it remains well bounded, and ∇·ξ along the vortex line does
not scale critically in time, it is safe to deduce a non-critical growth of Ω(t).
A reasoning along these lines was brought forth in [30] to exclude a finite-time

singularity for Kida-Pelz initial conditions. This argument was tested and put
in doubt on the basis of numerical simulations presented in this thesis in section
5.4.4. Still, the insight provided by the theorem could successfully be used to
distinguish between different scenarios of finite-time blowups.
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4.2.3. Vortex line stretching and vorticity accumulation
Vortex stretching was recognized in section 2.2.4 as the mechanism responsible
for the accumulation of vorticity. Revisited from a geometric point of view,
vortex lines are transported with the flow, yet twist and turn due to vortex
stretching. Since in the absence of dissipation vortex lines are unable to recon-
nect, the topological properties of vortex lines are fixed. A complex flow will
therefore entangle, stretch and twist vortex lines in a non-trivial way.
The geometric equivalent of the vortex stretching term is the increase in

length for a Lagrangian vortex line. It is possible to quantify this stretching
and establish a sound connection to the vorticity dynamics of the flow. This
in turn can then be used to reformulate blowup criteria in terms of geometric
constraints on Lagrangian vortex lines. This section is meant to give an overview
over this procedure to lay the foundations of the second theorem of Deng et al.
[30].
Consider a vortex line segment L0 at time t = 0 and its Lagrangian image

Lt = X(L0, t). Let β, s be the arc length parameters of Lt at times 0 and t.
Also, note that for a point α on L0

ξ(X(α, t), t) = ∂X(α, t)
∂s

(4.20)

for any time t and in particular

ξ0(α) = ∂α

∂β
(4.21)

at t = 0.
Now, starting at the vorticity transport formula (2.41), the evolution of the

absolute vorticity at a Lagrangian fluid element becomes

|ω(X(α, t), t)| = ξ(X(α, t), t) · ω(X(α, t), t)
= ξ(X(α, t), t) · ∇αX(α, t) · ξ0(α)|ω0(α)|

= ∂X(α, t)
∂s

· ∇αX(α, t) · ∂α
∂β
|ω0(α)|

= ∂X(α, t)
∂s

· ∂X(α, t)
∂β

|ω0(α)|

=
(
∂X(α, t)

∂s
· ∂X(α, t)

∂s

)
∂s

∂β
|ω0(α)|

= ∂s

∂β
|ω0(α)|

which results in
∂s

∂β
= |ω(X(α, t), t)|

|ω0(α)| , (4.22)
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meaning that the local stretching of the length of a vortex line segment that is
transported with the flow is equivalent to the growth of vorticity at the corre-
sponding transported fluid element.
This result can be transformed into a bound for the length of a vortex line

by the vorticity along this line. Denote with l(t) the length of the vortex line
segment Lt at time t and define with

ΩL(t) := ‖ω(·, t)‖L∞(Lt) (4.23)

the maximum vorticity on the vortex line segment. Furthermore, let

M(t) := max(‖∇ · ξ‖L∞(Lt), ‖κ‖L∞(lt)) (4.24)

be the quantity of vortex line convergence ∇·ξ and vortex line curvature κ, and
define λ(Lt) := M(t)l(t). Then, the relative increase of the length of the vortex
line segment in a time interval, l(t)/l(0), is bounded as

e−λ(Lt) Ωl(t)
Ωl(0) ≤

l(t)
l(0) ≤ eλ(L0) Ωl(t)

Ωl(0) . (4.25)

Proof:

(i)

l(t) =
β2∫
β1

sβdβ =
β2∫
β1

∣∣∣∣∣ω(X(α, t), t)
ω0(α)

∣∣∣∣∣ dβ
≤

β2∫
β1

Ωl(t)
e−λ(L0)Ωl(0)dβ = eλ(L0) Ωl(t)

Ωl(0) l(0) .

(ii)

l(t) =
β2∫
β1

sβdβ =
β2∫
β1

∣∣∣∣∣ω(X(α, t), t)
ω0(α)

∣∣∣∣∣ dβ
≥

β2∫
β1

e−λ(Lt)Ωl(t)
Ωl(0) dβ = e−λ(Lt) Ωl(t)

Ωl(0) l(0) .

In a slightly weaker form, equation (4.25) was presented in [30] as “lemma 3”
as part of a formal proof for a non-blowup criterion. Yet it may be viewed in its
own right: The relative increase in length along a time-interval is bounded by
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Lt Lt Lt

Figure 4.1.: Characterizing vortex line geometry in terms of λ(Lt). A slightly curved
vortex line with approximately parallel neighboring vortex lines (left) exhibits small
λ(Lt). Vortex lines with tightening neighboring vortex lines (center) or vortex lines
with high curvature, in comparison to their length (right) have high λ(Lt).

the vorticity increase and a factor exp(±λ(Lt)). Thus, λ(Lt) is a dimensionless
number, characterizing the geometric “tameness” of the vortex line filament.
As depicted in figure 4.1, a vortex line segment has a huge λ(Lt), if its maxi-

mum curvature is large, relative to its length (the segment is “kinked” instead of
“curved”), or if the surrounding vortex lines collapse to the considered segment
in at least a point (the surrounding is “tightening” instead of “parallel”). A
relatively unbent vortex line segment with approximately parallel neighboring
vortex lines possesses a low value of λ(Lt). This quantifies the constricted no-
tion of “relatively straight” and “smoothly directed” given in [28] in a sharper
way.

4.2.4. Lagrangian evolution of vortex line segments
Roughly following [30, 31], combining the above results with the Lagrangian
vorticity amplification equation (2.39) allows for a connection of the stretching
process to the Lagrangian accumulation of vorticity. Since ∂s/∂β = sβ differs
from |ω(X(α, t), t)| just by a constant |ω0(α)|, accumulation of vorticity behaves
exactly as increase in stretching:

D

Dt
sβ = ((ξ · ∇u) · ξ) sβ . (4.26)

The curvature κ of the vortex line Lt fulfills

κn = ∂L̇t(s)
∂s

= ∂ξ

∂s
= (ξ · ∇)ξ , (4.27)

with n = L̈t/|L̈t| being the unit normal vector of the vortex line. Then, the
Lagrangian evolution of vortex line stretching becomes

D

Dt
sβ = ((ξ · ∇u) · ξ) sβ
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= ((ξ · ∇)(u · ξ)− u · (ξ · ∇)ξ) sβ

=
(
∂

∂s
(u · ξ)− κ(u · n)

)
sβ ,

which, using (4.27), leads to

D

Dt
sβ = ∂

∂β
(u · ξ)− κ(u · n)sβ . (4.28)

At this point it becomes obvious how the process of vortex line stretching in-
teracts with the velocity in two distinct ways: The velocity in direction of the
vortex line elongates the segment by drawing it out, while a part of the velocity
normal to the vortex line increases the segment’s length by enlarging its curves.
Integrating (4.28) along the vortex line (from β1 to β2) yields

Dt(s(β2, t)− s(β1, t)) = (u · ξ)(X(β2, t), t)− (u · ξ)(X(β1, t), t)

−
β2∫
β1

κ(u · n)(X(η, t), t)sηdη ,

and integrating over time (from 0 to t)

l(t) ≤ l(0) +
t∫

0

[(u · ξ)(X(β1, τ), τ)− (u · ξ)(X(β2, τ), τ)] dτ

−
t∫

0

λ(τ)‖u · n‖L∞(Lτ )dτ ,

which results in

l(t) ≤ l(0) +
t∫

0

[Uξ(τ) + λ(τ)Un(τ)] dτ , (4.29)

for

Uξ(t) := max
x,y∈Lt

|(u · ξ)(x, t)− (u · ξ)(y, t)|

Un(t) := max
Lt
|u · n|

Instead of starting the above reasoning at time t = 0, the results are identical
for a later time 0 < t1 < t. This result may be understood as an upper bound
for vortex line stretching in terms of velocity and vortex line geometry.
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In conjunction with the connection between length increase and vorticity am-
plification, given in equation (4.25), we arrive at

Ωl(t) ≤ Ωl(0)eλ(Lt)

1 + 1
l(0)

t∫
0

(Uξ(τ) + λ(τ)Un(τ))dτ
 .

This is an inequality for the control of growth rate of the vorticity by geometric
flow properties. From this estimate, by combining it with BKM to distinguish
critical from sub-critical vorticity growth, it is a short way to another non-
blowup criterion:
Deng-Hou-Yu theorem 2: Assume there is a family of vortex line segments

Lt and T0 ∈ [0, T ), such that Lt2 ⊆ X(Lt1 , t1, t2) for all T0 < t1 < t2 < T . We
also assume that Ω(t) is monotonically increasing and ‖ω(t)‖L∞(Lt) ≥ c0Ω(t) for
some c0 > 0 when t is sufficiently close to T . Furthermore, we assume that

(i) Uξ(t) + Un(t)λ(Lt) . (T − t)−A for some A ∈ (0, 1)

(ii) λ(Lt) ≤ C0,

(iii) l(t) & (T − t)B for some B < 1− A.

Then there will be no blowup in the 3D incompressible Euler flow up to time T.

Here, a(t) . b(t) means there exists a constant c ∈ R such that |a(t)| < c |b(t)|
(and accordingly for a(t) & b(5)). The remainder of the proof is given in [30].
It should be noted that theorem 2 again includes assumptions on the di-

mensionless number λ(Lt), which was already encountered when analyzing the
process of vortex stretching in section 4.2.3. Especially assumption (ii) poses
a uniform bound in time for λ(Lt). This translates to words as the process of
“zooming in” to the location of maximum vorticity in order to keep the con-
sidered vortex line segment relatively straight in comparison to its length. The
assumed accompanying collapse in length to keep λ(Lt) bounded is then linked
in its growth rate to the blowup of the velocity components.
As a side note, the precise way of the coupling between the collapse of the

length scale by (T − t)B and the increase in velocity as 1/(T − t)A can be
anticipated by resorting to the scaling arguments brought forward in the context
of self-similar solutions. The Euler equations dictate, as derived in section 5.1.2,
that a self-similar collapse to a point has to obey

u(x, t) = 1
(T − t)

h
h+1

U

 x
(T − t)

1
h+1

 , (4.30)

for some h ∈ R and U : R3 → R3. For A = h/(h+ 1) and B = 1/(h+ 1) this is
exactly the critical scaling behavior of theorem 2.
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It is worth mentioning that the above presented criterion, even though it is
obviously inspired by the classical geometric criteria introduced in section 4.2.1,
still differs in crucial aspects. The posed assumptions are purely local and
restricted to the geometry of a single critical vortex line filament. Assumptions
on the velocity do not, in contrast to Constantin et al. [28], impose a uniform
bound (which is not observed in simulations), but allow for a finite-time blowup
of velocity, strictly connected in its growth rate to the geometrical evolution of
the filament. The vortex line segment itself is not assumed to be of O(1) length
(as in Cordoba and Fefferman [29]) or be contained in an O(1)-region (which,
again, was not observed in simulations). These aspects in combination render
it a promising theorem to be directly tested by numerical simulations. Exactly
this will be done in chapter 5.

4.2.5. Pressure and symmetries
A rather unusual way of analyzing a finite-time blowup of the Euler equations
was derived by Ng and Bhattacharjee [78]. It exclusively concerns the Euler
equations for a specific set of symmetries and on a limited subset of the physical
domain. Nevertheless it will be presented here since all assumptions, however
specific, are actually met for the cases examined in the context of this work.
Suppose a flow with high symmetry, such that

v(x, y, z) =
∑
l,m,n

almn sin(lx) cos(my) cos(nz) (4.31)

u(x, y, z) = (ux, uy, uz)T = (v(x, y, z), v(y, z, x), v(z, x, y)) . (4.32)

This symmetry is called the Kida-Pelz symmetry (Boratav and Pelz [7], Kida
[59]) and implies that the normal component of the velocity at the Cartesian
planes is anti-symmetric and the tangential components are symmetric. The
symmetries are preserved by the Euler equations. Flows with this symmetry
will be presented in detail in section 5.2.4.
Now, consider the flow on the line y = z = 0. It follows from the constraints of

the symmetries at the Cartesian planes that the vorticity ω completely vanishes
and uy = uz = 0 on this line. The x-component of velocity fulfills

ux(x, 0, 0) = v(x, 0, 0) =
∑
l,m,n

almn sin(lx). (4.33)

Due to the symmetry, it is now possible to simplify the evolution in time of the
x-derivative of ux, α = ∂xux, by considering the x-derivative of the x-component
of the Euler equations (2.10):

∂tα +
∑
i

∂x (ui∂iux) = ∂xxp
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∂tα +
∑
i

(∂xui) (∂iux) +
∑
i

ui∂i∂xux = ∂xxp

Dtα + α2 = ∂xxp.

This partial differential equation for α leads to a finite-time singularity if the
sign of ∂xxp is positive. In particular, this leads to the conclusion:
Ng-Bhattacharjee: If for a flow obeying the Kida-Pelz symmetries there

exists a Lagrangian fluid element on the Cartesian axis y = z = 0, such that

∂xxp > 0 (4.34)

for all time following this fluid element, then the x-derivative of the x-component
of the velocity, ∂xux, will blow up in final time.
In the original version of [78] this theorem was discarded in favor of a refor-

mulation in terms of the fourth derivative of pressure ∂xxxxp in the origin, as a
Lagrangian analysis of the pressure derivative seemed rather complicated. As
the numerics presented in this work are capable of tracking Lagrangian quanti-
ties, this argument no longer applies and the original version of the theorem as
presented above is utilized for numerical simulations in section 5.4.3.

66



5. Simulation of Finite-time
Singularities

From the advent of the digital age and with the raise of scientific computing,
computational fluid dynamics has been an active topic and has tremendously
increased our understanding of the behavior of fluid flow. Since the limited
knowledge on nonlinear partial differential equations in many cases does not
permit for analytic solutions to be found (with the Navier-Stokes and Euler
equations among the most famous examples), it seems very natural to rely
on numerical experiments to develop intuition on fluid evolution and vorticity-
depletion or -amplification processes. Of course, no purely numerical approach
to the problem of existence and uniqueness of solutions to the Euler equations
can be found. Nevertheless, experience gained in numerical simulations may be
used as a hint for critical quantities or be used to observe promising directions
to tackle the problem analytically. Especially the verification of assumptions of
analytical blowup criteria can be achieved via numerical means. This will be
done in the course of this chapter.
First, referring to the analytical restrictions on possible finite-time Euler sin-

gularities given in the previous chapter, typical possible scenarios for a blowup
are introduced in section 5.1. This involves the presentation of necessary inter-
actions such as vorticity-strain coupling and the discussion of self-similar flows
of various types.
An overview over the attempts to realize these scenarios in practice as initial

conditions for Euler flows is given in section 5.2. Here, some notable initial
conditions are introduced and discussed, regarding their intent in design and
their behavior in numerical simulations. At this point, the choice for the initial
conditions of this work will be justified and put in perspective.
Subsequently in section 5.3, the evolution of the flow is presented for the

considered initial conditions. This includes an illustration of the formation of
typical structures and the analysis of the flow regarding the scenarios for the
development of a finite-time singularity that were presented earlier.
Results for the conducted numerical simulations regarding the previously in-

troduced blowup criteria are presented in section 5.4. Here, the focus is on the
Lagrangian and geometric criteria. It will be shown by means of the conducted
numerical simulations that the assumptions for these geometric non-blowup cri-
teria are met. This poses an evidence against the formation of a finite-time
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singularity for the considered initial conditions.

5.1. Scenarios for finite-time singularities
It has been established in the previous chapter that a singularity of the Euler
equations in finite time necessitates rapid accumulation of vorticity. This sec-
tion denominates scenarios which facilitate such a critical growth, divided into
local and global aspects. Locally, vorticity-strain coupling is identified as the
mechanism for nonlinear amplification in finite time. Globally, the notion and
possibility of self-similar or locally self-similar collapse to a point is introduced.
These aspects will serve as a basis for the construction of initial conditions
suitable for the possible formation of a finite-time singularity.

5.1.1. Vorticity-strain coupling
Recalling equation (2.37) from section 2.2.4, the Lagrangian evolution of vor-
ticity reads

Dω

Dt
= Sω ,

where S is the strain, S = 1/2 (∇u+∇uT ). Due to the incompressibility condi-
tion (2.8) the trace of S vanishes and due to the symmetry of S its eigenvalues
λi are real and the corresponding eigenvectors vi are orthogonal. Thus λ1, the
biggest eigenvalue, fulfills λ1 > 0 in regions with non-vanishing strain.
If we change into the local coordinate system given by the vi (primes denoting

variables in the changed coordinates), S ′ is diagonal and ω′1 is amplified with
λ1ω

′
1. Assuming a strain proportional to the vorticity, λ1 ∼ ω′1, results in

Dω′1
Dt

= ω′1
2
.

This leads to a finite-time singularity of the form ω ∼ (T − t)−1, conforming
with the critical growth rate for the BKM criterion presented in section 4.1.2.
This proportionality of the strain to the vorticity is crucial. If the strain rate
is constant instead, the growth in vorticity is merely exponential. Several cases
have been suggested in which this mechanism may take place.
For an isolated vortex to create a strain of proper coupling to its vorticity,

its curvature must approach infinity (see section 5.2.3). The geometric criteria
presented in section 4.2 may be interpreted as a sharpening of this statement:
For a critical vorticity-strain coupling to be induced by an isolated vortex line,
it must either kink or tighten fast enough to be compatible with theorem 2 in
section 4.2.4.
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Besides “self-stretching”-scenarios, it is possible for neighboring vortices to
induce an axial strain sufficient in the above sense. Reflectional symmetries in
the flow may provide this behavior [52, 86], as the “mirror images” impose the
axial strain on the fundamental vortex tube, even though the above restriction
on the curvature still exist. This may be overcome by introducing rotational
symmetries, as done by Boratav and Pelz [6] and discussed by Pelz [82]. It can
be shown that this class of flows introduces a strain-vorticity coupling that is
positive even for vanishing curvature. Scenarios of these classes will be discussed
in section 5.2.4.
It should be noted that, contrary to expectations, the vorticity-strain coupling

does not readily appear in nature. One would expect a tendency of the vorticity
to align itself to the eigenvector of the strain tensor with the largest eigenvalue
all by itself, since the parallel component is amplified, while the orthogonal com-
ponents are damped or stay nearly constant. Nevertheless, for viscid turbulent
flows, quite a different behavior is observed both in numerical simulations and
experiments: The vorticity is most likely to align to the intermediate eigenvector
of the strain tensor (Ashurst et al. [1], Chevillard and Meneveau [16], Meneveau
[74]). One can therefore expect that functional vorticity-strain coupling is in-
herently unstable. The process has to be designed “artificially” by choosing
suitable initial conditions.
A more precise notion of the process of vorticity alignment in turbulent flows

is given by Hamlington, Schumacher, and Dahm [45]. They distinguish, evaluat-
ing equation (2.26) numerically, between strain induced locally by the immediate
neighborhood and globally by long-range interaction. For turbulent flows, they
observe a most likely alignment of the vorticity to the most positive eigenvec-
tor of the global strain. Taking into account also the local strain restores the
alignment of vorticity to the intermediate eigenvector. For the successful emer-
gence of a finite-time singularity of the Euler equations in a point-wise sense,
vorticity-strain coupling should be induced by the local strain. In principle,
this could be numerically verified by applying the technique from [45] to Euler
blowup simulations.

5.1.2. Self-similar and locally self-similar blowup
As a global scenario for a finite-time singularity, self-similar solutions are par-
ticularly favored by physicists. The question of the existence of self-similar
solutions for the Euler equations has its origin in the identical question for
the Navier-Stokes equations first posed by Leray [71]. Self-similar solutions are
solutions in R3 of the form

u(x, t) = 1√
2a(T − t)

U

 x√
2a(T − t)

 , (5.1)
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where a > 0 constant, T ∈ R and U : R3 → R3. If a function U(x) 6= 0 could be
found, such that u of equation (5.1) is a solution to the Navier-Stokes equations,
it would lead to a finite-time singularity at time t = T . Inserting equation (5.1)
back into the Navier-Stokes equation yields

aU + a(y · ∇)U + (U · ∇)U +∇P = 0
∇ ·U = 0 ,

(5.2)

with y ∈ R3. It can easily be seen using standard embedding theorems that by
assuming finite kinetic energy and natural energy dissipation we have U ∈ L3(R3).
In this setup, the question raised by Leray was answered negatively by Nec̆as
et al. [77] and Tsai [92]: If U ∈ Lp(R3), p > 3, fulfills equation (5.2) then U = 0,
which rules out a globally self-similar blowup of the Navier-Stokes equations.

Globally self-similar blowup for the Euler equation

Due to the absence of energy dissipation the situation is slightly more difficult
in the Euler case. Here, the constraints posed by scaling are less severe, leading
to a larger class of possible self-similar scenarios. In addition, without energy
dissipation, the vital argument of the maximum principle [77, 92] is not transfer-
able to the Euler case. The question has to be tackled from a different direction,
leading to slightly modified prerequisites for the formal proof.
Consider a rescaling of a solution for the Euler equations,

x = λ x′ , u = λ−h u′ , (5.3)

λ > 0, h ∈ R. With a simple scaling argument we deduce:

t = λh+1t′ , p = λ−2hp′ . (5.4)

This means: If (u, p) is a solution to the Euler equations, then

u′(x′, t′) = λh u(λx′, λh+1t′) ,
p′(x′, t′) = λ2h p(λx′, λh+1t′)

(5.5)

is also a solution for arbitrary λ > 0, h ∈ R, h 6= −1.
For constructing a self-similar solution, the scaling parameter λ has to ap-

proach zero in finite time in a way that is consistent with a blowup of the
Euler equations. Following the requirement of the Beale-Kato-Majda criterion
(compare 4.1.2), we therefore want the vorticity, which scales like

ω = λh+1 ω′ (5.6)

to behave in time like
ω(t) ≈ 1

T − t
ω0 (5.7)
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for some ω0 and the assumed singular time T ∈ R. This leads to

λ = (T − t)−
1

h+1 . (5.8)

Applying this scaling to construct a self-similar solution to the Euler equations
yields

u(x, t) = 1
(T − t)

h
h+1

U

 x
(T − t)

1
h+1

 . (5.9)

Note that for h = 1 this corresponds to Leray’s self-similar solutions (5.1). This
class of solutions may be considered as the self-similar solutions to the Euler
equations which exhibit a finite-time blowup.
Reinserting equation (5.9) into the Euler equation leads to

h

h+ 1U + 1
h+ 1 (x · ∇) U + (U · ∇) U +∇P = 0

∇ ·U = 0 .
(5.10)

This is the analogon to equation (5.2) for the Euler equations. Finding a non-
trivial solution U to equation (5.10) is equivalent to finding a finite-time blowup
solution to the Euler equation.
This possibility has recently been disproved by Chae [13] and Chae and Shvy-

dkoy [14]. Their reasoning does not make use of energy estimates in combination
with scaling properties but directly disproves the existence of a nontrivial vor-
ticity field of the above self-similarity class. If the initial vorticity ω0 decays
sufficiently fast for large x,

∃ p1 > 0 such that ω0 ∈ Lp(R3) ∀ p ∈ (0, p1), (5.11)

then every vorticity field of the form

ω(x, t) = a(t)ω0(b(t)x) (5.12)

that is a solution of the Euler equations up to time T , with a(t), b(t) arbitrary
real-valued functions must have b(t) = 1. Roughly following Chae [13], this can
be seen as follows:
The vorticity amplification factor α(x, t) (see equation 2.40) can be bounded

by ‖∇u(·, t)‖L∞ via a simple estimate. Upon integration, the Lagrangian evo-
lution of the absolute value of vorticity, equation (2.39), yields the estimate
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|ω0(X−1(x, t))| exp
− t∫

0

‖∇u(·, τ)‖L∞dτ
 ≤ a(t)|ω0(b(t)x)| (5.13)

≤ |ω0(X−1(x, t))| exp
 t∫

0

‖∇u(·, τ)‖L∞dτ
 ,

or, computing the Lp(R3)-Norm for equation (5.13),

‖ω0‖Lp exp
− t∫

0

‖∇u(·, τ)‖L∞dτ
 ≤ a(t)b(t)−

1
p‖ω0‖Lp (5.14)

≤ ‖ω0‖Lp exp
 t∫

0

‖∇u(·, τ)‖L∞dτ
 .

Now b(t) = 1, since by assumption ‖ω0‖Lp remains finite for all p ∈ (0, p1) and
the flow is smooth for t ∈ (0, T ). This excludes nontrivial globally self-similar
blowup solutions for the Euler equations.
As already mentioned in section 4.2.4 for the collapse of vortex line filaments,

the scaling restrictions posed by the Euler equations constitute an alternative ap-
proach to the interpretation of theorem 2 by Deng et al. [30]: Maintaining a sim-
ilar geometrical appearance of a critical vortex filament in time, λ(t) = const.,
its length collapses as (T − t)B and the velocity components Uξ and Un blow up
as 1/(T − t)A, with A+B = 1. As soon as (A+B < 1), a finite-time singularity
is ruled out.

Locally self-similar blowup

It is reasonable to term the previously presented self-similar solutions “global”,
since the self-similar scaling behavior holds on the entire R3. This is quite a
strict constraint. A weaker form of a self-similarity is to consider scenarios
where the self-similar scaling is only valid in a restricted core region, typically
shrinking to a point in finite time. Outside this similarity region the solution
is assumed to be smooth and need not obey the self-similar scaling of the core.
This scenario is especially popular among physicists as a possibility for finite-
time blowup for both the Navier-Stokes and the Euler equation, particularly
concerning numerical simulations (see e.g. [6, 44, 52, 55, 82]).
Regarding the Navier-Stokes equations, a locally self-similar blowup solution

has been excluded under similar conditions as for the global case presented above
by Hou and Li [48].
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For the Euler equations, analytic results regarding locally self-similar blowup
scenarios are scarce. Numerical simulations, especially involving vortex dode-
capoles (which will be presented in more detail in section 5.2.4), have repeatedly
suggested such behavior (see e.g. [62, 63, 81] for simulations with vortex fila-
ments models, [7] for spectral simulations). Yet, very recently there has been
some analytical progress by Chae and Shvydkoy [14] excluding several physically
relevant cases.
Section 5.4.4 of this thesis will present numerical evidence against such a

scenario for the vortex dodecapole case.

Cascading self-similar blowup

An even less limiting case of self-similarity is the “cascading self-similarity”
(suggested by e.g. [84]). This term is interpreted relatively broad, naming a
flow which replicates itself in a periodic or repeating manner.
Consider for example a flow structure of a length scale λ, which exhibits

the formation of an instability of the same form at a fraction of the original
length scale, 1

n
λ. In such a scenario, a cascading formation of ever smaller (and

possibly more violent) structures will evolve, eventually leading to a collapse in
finite time. However, such flows are not only difficult to tackle analytically, but
also certainly require a complex flow structure to begin with.
A similar case has been proposed [42] for the vortex dodecapole (see section

5.2.4): Vortex tubes with an initially axisymmetric vorticity profile are deformed
and flattened severely (termed “pancake”-like) by the strain of their images un-
der rotational symmetry. Yet numerical simulations suggest a roll-up of these
vortex sheets at late times, which could possibly result in another vortex dode-
capole of a smaller length scale. This scenario is investigated in section 5.3 of
this work.

5.2. Initial conditions
Along the lines of the above presented scenarios for a finite-time singularity for
the Euler equations, a number of numerical simulations have been performed to
act as evidence for or against a blowup. Different initial conditions were intro-
duced and subsequently improved or refined to construct flows with prolonged
intervals of vorticity-strain coupling. Yet in all cases, the resolution persists as
a limiting factor – singular and near-singular behavior remain distinguishable
only up to a restricted certainty.
In the following section I will line out the most popular numerical approaches

to finite-time self-amplification. I start with a selected overview over the most
influential historical attempts up to recently proposed initial conditions. I will
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then review the most promising candidates that emerged, notably Kerr’s initial
conditions and several variants of vortex dodecapoles featuring Pelz’s eightfold
symmetry.

5.2.1. A brief history of initial conditions
The first breakthrough in the numerical simulation of a possible finite-time
singularity for the Euler equations was achieved by Morf et al. [76], claiming to
have found a finite-time singularity. Their results were obtained by solving the
Euler equations as power series using Padé approximants. The Taylor-Green
vortex, introduced by Taylor and Green [90] was used as an initial condition.
These approximations were later refined by Brachet et al. [8] to a higher order,
and shown in comparison to pseudo spectral simulations.
Chorin [19, 20] employed a vortex-segment method to analyze the evolution

of a perturbed vortex in a three-dimensional periodic box. Despite limited
capability of the method to capture self-induction, the author observes a finite-
time blowup of vorticity.
The vortex filament model may be seen as a related numerical method. In-

troduced by Siggia [89], it allows for variable core sizes but no core deformation
and suppresses small-scale instabilities. The author simulates anti-parallel vor-
tex filaments and observes a self-similar collapse in finite time via faster-than-
exponential growth of the vortex filament’s arc length.
The first notable adaptive mesh simulation of the Euler equations was con-

ducted by Pumir and Siggia [86]. They focused on the evolution of anti-parallel
vortex tubes and observed only exponential amplification of vorticity. In more
detail, they established that in the critical region the velocity aligns to the
eigenvector of the strain matrix corresponding to the intermediate eigenvalue
(as discussed in section 5.1.1), which is small in magnitude. However their
remeshing and smoothing procedures introduced considerable unphysical energy
dissipation.
Bell and Marcus [4] utilized a second-order projection method to simulate the

evolution of a perturbed vortex tube up to a resolution of 1283. They observe
a non-integrable intensification of vorticity and deduce, by fitting the vorticity
growth to a BKM-compatible growth, that a blowup is possible with these
initial conditions. In late stages, a complex structure (“hairpin-like”) develops
that does not exhibit vortex flattening but retains its core structure.
The Taylor-Green initial conditions were repeated by Brachet et al. [9] with

a pseudo spectral approach that achieved, by using the initial conditions’ sym-
metries, a resolution up to 8643 and an amplification of vorticity by a factor of
5. They observe the evolution of “pancake-like” structures that shrink exponen-
tially in time and which fit to a simple self-similar model. They do not exclude
a finite-time singularity as an explanation.
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Grauer et al. [43] revisited the initial conditions of Bell and Marcus [4] and,
using adaptive mesh refinement, achieved an effective resolution of up to 20483

grid points. An amplification of vorticity by a factor of 21 was observed. Again,
a “hairpin-like” structure was seen as responsible for the dramatic growth rate.
The time evolution of vorticity could be fitted against a finite-time singularity.
Very recently, Bustamante and Brachet [11] redid the calculation for the

Taylor-Green initial conditions with a pseudo spectral simulation of 40963 grid
points. They analyze the flow by connecting BKM and the analyticity-strip
method and observe a change of regime in the flow at the latest stage of the
simulation. This disagrees with previous evidence against a finite-time singu-
larity given in [8, 22].

5.2.2. Kerr’s initial conditions
The above presented list of the last century’s numerical hunt for finite-time
singularities was, in many cases, inconsistent and the results often were incon-
clusive or even conflicting. One of the most ambitious and highly contested
studies in favor of a finite-time singularity was performed by Kerr [52]. It was
widely viewed as the most promising candidate of its time and will therefore be
presented briefly in the following paragraphs.

Figure 5.1.: Perturbed anti-parallel vortex tubes of Kerr’s initial conditions. De-
picted is a reconstructed version without the sophisticated spectral filter, left at
t = 0 and right at t = 6. Source: [47]

Its original form, presented by Melander and Hussain [73] and Kerr and Hus-
sain [58], consists of a compact initial vorticity profile for perturbed antisym-
metric vortex tubes (depicted in figure 5.1), smoothed by a high-wave number
filter. The improved version [52] features a more complex vorticity profile,

ω(r) = exp
(
r2(1 + r2 + r4)− r2

1− r2

)
(5.15)
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with an initial trajectory (x(s), y, z(s)) for the perturbed vortex tube of

x(s) = x0 + δx cos(πs/Lx) (5.16)
z(s) = z0 + δz cos(πs/Ly) , (5.17)

where

s(y) = y2 + Lyδy1 sin(πy2/Ly) (5.18)
y2 = y + Lyδy2 sin(πy/Ly) . (5.19)

For δy1 = δy2 = 0, this trajectory is sinusoidal like [58, 73], but with nonzero
δy1 and δy2 a significantly faster growth of peak vorticity was obtained. These
definitions are used to describe the vorticity vector field in the whole domain as

ω0(x) = ω(r)(ωx(x), ωy(x), ωz(x)) , (5.20)

where r = |(x, y, z) − (x(s), y, z(s))|/R is the rescaled distance to the core tra-
jectory and

ωx = −πδx
Lx

[
1 + πδy2 cos

(
πy

Ly

)]
×
[
1 + πδy1 cos

(
πy2

Ly

)]
sin

(
πs(y)
Lx

)
, (5.21)

ωy = 1, (5.22)

ωz = −πδz
Lz

[
1 + πδy2 cos

(
πy

Ly

)]
×
[
1 + πδy1 cos

(
πy2

Ly

)]
sin

(
πs(y)
Lz

)
. (5.23)

As parameters, δy1 = 0.5, δy2 = 0.4, δx = −1.6, δz = 0, z0 = 1.57 and R = 0.75
where used, and the domain is restricted to Lx = Ly = 4π, Lz = 2π with the
“symmetry plane” at y = 0 and the “dividing plane” at z = 0.
To smooth the rough edges of these initial conditions, a spectral filtering pro-

cedure is carried out. This procedure is believed [56, 58] to make the crucial
difference between singular and non-singular behavior by inhibiting regions of
negative vorticity related to high wave-number fluctuations in the initial spec-
trum. The filtering was realized in [52] by a rather complex procedure of heavily
smoothing with a Fourier code and then remapping to a Chebychew framework.
It was claimed [47] that this remapping introduces an asymmetry which renders
Kerr’s finalized initial conditions hard to reproduce.
In his original simulation, Kerr [52] reached up to 1024 × 256 × 128 degrees

of freedom with his Chebychew code. The accumulation of vorticity was re-
ported as being compatible with the Beale-Kato-Majda theorem, with the peak
vorticity being located on the symmetry plane. The time dependence of axial
strain was also reported to be in agreement with the singular scaling of the
peak vorticity. This leads the author to deduce the development of a finite-time
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singularity. In addition, backing up these claims, identical rates of collapse in
all three directions are observed and indicate a locally self-similar behavior.
In a series of articles [53, 54, 55, 56], various objections, both numerical and

analytical in nature, were addressed. Most notably, Hou and Li [47] recon-
structed the above initial conditions and redid the simulation using a pseudo
spectral code with up to 1536×1024×3072 grid points. They report, contradict-
ing the above findings, that the maximum vorticity does not grow faster than
double exponential in time. They observe a flattening and subsequent roll-up
of the vortex tubes.
Very recently [57] a new variation of these initial conditions are in develop-

ment. They differ in the fact that the perturbation of the vortex tube is locally
concentrated to provide more room for surrounding structures to develop.
Even though Kerr’s initial conditions are among the most famous candidates

for a finite-time blowup and certainly are the most controversial, they will not
be examined in this thesis due to the fact that the original initial conditions are
unreproducible without details on the smoothing technique applied by Kerr.
It should be noted that there are narrow analytical restrictions on the forma-

tion of a finite-time singularity for the scenario of perturbed anti-parallel vortex
tubes as considered above. Especially, bounds on the regularity of the direction
of vorticity [23, 29] in conjunction with a finite velocity or bounds on the curva-
ture of vortex lines [30, 31] exclude a blowup in finite time. Alternative methods
of inducing axial strain without the need of irregular vortex line geometry will
be presented in the following section.

5.2.3. Reflectional symmetries
It was demonstrated in the previous sections that vorticity-strain coupling (sec-
tion 5.1.1) is the favored mechanism for a finite-time Euler singularity. Since it
is well established that this process is inherently unstable for turbulent flows, it
seems natural to search for techniques to artificially keep the coupling existent.
One such technique is the introduction of symmetries to the flow. Early exam-
ples such as the Taylor-Green vortex or Kerr’s initial conditions (section 5.2.2)
are already employing such symmetries.
This section is meant to describe the consequences of planes of reflectional

symmetry for the process of vorticity-strain coupling. It will also introduce im-
plications of reflectional symmetries on the geometry of vortex lines intersecting
the plane of symmetry. This will serve as a motivation for the introduction of
high-symmetry initial conditions in section 5.2.4.
Consider the plane z = 0 to be a plane of reflectional symmetry, as shown in

figure 5.2, defined by
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u

ω

z

Figure 5.2.: Effects of planes of reflectional symmetry on intersecting vortex tubes:
In the symmetry plane, the vorticity ω is normal and the strain tensor possesses
a parallel eigenvector with corresponding eigenvalue Szz. The curvature κ in the
symmetry plane has to increase in order to support critical vorticity-strain coupling.

ux(x, y, z) = ux(x, y,−z)
uy(x, y, z) = uy(x, y,−z)
uz(x, y, z) = −uz(x, y,−z)

for the velocity vector field, which leads to uz = 0 in the plane of symmetry.
Accordingly, the vorticity obeys

ωx(x, y, z) = −ωx(x, y,−z)
ωy(x, y, z) = −ωy(x, y,−z)
ωz(x, y, z) = ωz(x, y,−z)

and in particular ωx = ωy = 0 or ω = ωz êz in the plane of symmetry. Due to
these properties, the strain tensor has Sxz = Syz = Szx = Szy = 0, or

S =

Sxx Sxy 0
Sxy Syy 0
0 0 Szz

 . (5.24)

It immediately follows that the eigenvector corresponding to the eigenvalue Szz
is directed normally to the symmetry plane, and the vorticity vector is aligned
to it. Note that this is the sole consequence of the reflectional symmetry and is
in no way influenced by the flow. A vortex tube normal to the symmetry plane
therefore seems like a natural candidate for critical accumulation of vorticity
by means of vorticity-strain coupling: All that is needed is a sufficiently long
period of time in which Szz ∼ ωz at one point of the symmetry plane.
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This possibility has been analyzed by Pelz [82] and will be summed up here.
As presented in section 2.2.1, the strain can be expressed in terms of the vorticity
via the Biot-Savart law (2.26). Taking into account only the zz-component, the
strain tensor in the plane of symmetry is given by

Szz = 3
4π

∫
((x− x′)ωy(x′)− (y − y′)ωx(x′))

(z − z′)
|x− x′|5

dx′ . (5.25)

Equation (5.25) shows that Szz in the plane of symmetry does not scale with ωz,
but does instead depend on ωx and ωy, which are both equal to zero in the z = 0
plane. Yet, in close proximity to the plane, ωx and ωy may grow, depending on
the curvature of the vortex line intersecting the symmetry plane.
This may be formalized as follows: As known from section 4.2.4, the curvature

of a vortex line fulfills
κn = ξ · ∇ξ . (5.26)

Since in the plane of symmetry, it holds ξ = êz, we have for each component of
the curvature:

κni = (ξ · ∇ξ)i

= ∂

∂z
ξi

= ∂

∂z

(
ωi
|ω|

)

= 1
|ω|

∂

∂z
ωi −

1
|ω|2

ωi
∂

∂z
|ω|

= ∂zωi
ωz

,

since ∂z|ω| = 0 in the symmetry plane. With defining κi = κni we arrive at

κx = ∂zωx
ωz

(5.27)

κy = ∂zωy
ωz

(5.28)

κz = 0 . (5.29)

With this in mind, consider a Taylor-expansion of ωi, i ∈ {x, y} around z = 0
in z-direction. Since ωi(z = 0) = 0,

ωi = h
∂ωi
∂z

∣∣∣∣∣
z=0

(5.30)

= hκiωz(z = 0) (5.31)
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for small h up to first order. Therefore, if the curvature is huge close to the plane
of symmetry, ωi with i ∈ {x, y} approximately scales like ωz and thus Szz may
scale with ωz too. However, for this to happen, we need κ ≈ 1/h. As a matter
of fact, the dimensionless number κih plays a similar role as the characteristic
geometric number λ(t) introduced in section 4.2.3. For Szz to blow up like ωz,
the curvature has to increase in a way to counter the shrinking of the length
scale h.
On the other hand, the axial strain Szz stretches the vortex tube in z-direction.

This counteracts any increase in curvature to a certain degree. More precisely,
the Lagrangian evolution of the curvature components κx and κy can easily be
calculated:

D

Dt
κx = D

Dt

(
∂zωx
ωz

)

= ∂zDtωx
ωz

− (∂zuz)
∂zωx
ωz
− ∂zωx

ω2
z

Dtωz

= 1
ωz

∂

∂z

(∑
i

Sxiωi

)
− 2κxSzz

= κxSxx + κySyy + ∂zSyz − 2κxSzz
= (Sxx − 2Szz)κx + Syyκy + ∂zSyz

and similarly
D

Dt
κy = Sxxκx + (Syy − 2Szz)κy + ∂zSxz .

This quantifies the effect of axial stretching on the normal curvatures: The axial
strain Szz diminishes the both κx and κy.
These counteracting processes of vortex line geometry are by no means ana-

lytically exact, since all long-range interactions have been ignored. Nevertheless,
they constitute an intrinsic resistance of a single vortex line to “self-stretch” in a
critical way. The argument may be readily translated to the case of (perturbed)
anti-parallel vortex tubes: Since no other components of vorticity are intro-
duced, Szz still only depends on ωx and ωy which in turn rely on high curvature
to scale like ωz close to the plane of symmetry.
One way to counter this is to induce the axial strain by neighboring tubes

instead of relying on a sufficiently large kink. This will be presented in the
following section by introducing additional rotational symmetry.

5.2.4. High symmetry initial conditions
In this section, an important class of initial conditions is introduced: The high
symmetry initial conditions. As a common property, scenarios of this type tend
to maximize the number of symmetries for various reasons:
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Flow Properties: The initial symmetries are preserved by the flow. It is thus
possible to study specific properties that are facilitated by the chosen
symmetries. Although flows of this kind often are artificial (i.e. may
never occur in reality), they are chosen because the interactions provided
by the symmetries are believed to encourage singular behavior.

Memory consumption: Both reflectional and rotational symmetries reduce the
number of degrees of freedom. This can be used in numerical simulations
to reduce the amount of memory needed to store the flow or enables to
increase the resolution significantly without exceeding the memory limi-
tations.

Instructions: The lower number of degrees of freedom results in less interac-
tions and ultimately leads to a lower number of instructions needed to
perform numerical simulations. Typically this effect is even larger than
the aforementioned memory savings. Using high symmetry initial condi-
tions enables to perform numerical simulations in a fraction of the original
time.

The already mentioned Taylor-Green vortex [90] may be seen as the prede-
cessor of this class of initial conditions, as it already features reflectional sym-
metries. Kerr’s initial conditions go one step further by introducing two planes
of reflectional symmetry. In the following section I will present the most suc-
cessful candidates of the class of initial conditions with even more symmetries
implemented.

Kida-Pelz symmetries

One notable high-symmetry flow was introduced by Kida [59] and has subse-
quently been used extensively to probe a possible Euler blowup numerically
(Boratav and Pelz [7], Cichowlas and Brachet [22], Pelz [83]) or analytically
(e.g. Ng and Bhattacharjee [78]) as well as study the onset of turbulence (e.g.
Boratav and Pelz [6]). The Kida-Pelz flow has a three-fold rotational symme-
try about the diagonal and a reflectional symmetry about all three Cartesian
planes. Flows with these two properties are termed as invariant under the full
octahedral group [82]. The Euler (and Navier-Stokes) equations preserve the
Kida-Pelz symmetries. In general one can write these initial conditions as

v(x, y, z) =
∑
l,m,n

almn sin(lx) cos(my) cos(nz) (5.32)

u = (ux, uy, uz)T = (v(x, y, z), v(y, z, x), v(z, x, y)) . (5.33)

This means, for a computational domain spanning the interval [0, π] in all three
dimensions, that the normal component of the velocity field is anti-symmetric
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under reflection at the Cartesian planes while the tangential components are
symmetric. Combining this with the three-fold rotational symmetry adds up to
a total memory saving factor of 1/24.

Figure 5.3.: A flow that exhibits the Kida-Pelz symmetry: a three-fold rotational
symmetry about the domain diagonal as well as a reflectional symmetry about the
three Cartesian planes. Source: [82]

On the same time there is reason to hope that these rather artificial sym-
metries encourage singular behavior if the initial conditions are constructed
accordingly. When assuming a localized vortex tube intersecting the symmetry
plane normally, as depicted in figure 5.3, its mirror images result in a total of
six pairs of anti-parallel vortex tubes. It has been proposed by Pelz [82] that
the strain induced by the rotational images of each tube, assuming a velocity
field supporting a collapse to the origin, may lead to the desired vorticity-strain
coupling described in section 5.1.1 without being subject to the counteraction
of strain and curvature in the planes of symmetry. Provided that the vortex
dodecapole retains its shape during collapse, this scenario of local self-similarity
is exactly the one that was addressed in 5.1.2.

Original Kida-Pelz initial conditions

In its original form, the Kida-Pelz initial conditions were proposed by Kida
[59], Kida and Murakami [60, 61] and simulated by e.g. Boratav and Pelz [6].
They read
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u(x, y, z) = sin(x)
(

cos(3y) cos(z)− cos(y) cos(3z)
)

v(x, y, z) = sin(y)
(

cos(3z) cos(x)− cos(z) cos(3x)
)

(5.34)

w(x, y, z) = sin(z)
(

cos(3x) cos(y)− cos(x) cos(3y)
)

and are clearly of the form of equation (5.32). These initial conditions evolve
into a dodecapole (6 vortex dipoles) in short time. Its vortices approach the
symmetry planes while simultaneously flattening. A detailed description of the
evolution of the original Kida-Pelz initial conditions is given by Boratav and
Pelz [7].

Grauer initial conditions
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Figure 5.4.: Left: Vorticity profile of one tube of the Grauer 12-tube initial condition
(with A = 20). Right: Volume plot of the vorticity for the whole domain.

A refined version of these initial conditions is based on the idea to already
start with a dodecapole consisting of vortices of a designated vorticity profile.
An example is the Grauer initial condition [41] with a vorticity profile given by

ω(r) =


− A

[
1− exp

(
−e2 log(2) 1

3r exp
(

1
3r
2 − 1

))]
for r < 2

3

0 for r ≥ 2
3

(5.35)

where r denotes the distance to the tube’s center line. The vorticity decreases
with increasing distance to the center line and is strictly zero for r > 2/3.

83



5. Simulation of Finite-time Singularities

Thus, the vortex has compact support in the r-ϕ-plane while still being smooth.
Figure 5.4 (left) displays the vorticity profile given above, figure 5.4 (right)
shows the whole dodecapole. Only one octant, i.e. three vortices, are simulated
due to symmetry. For the reasons lined out in the previous sections, this kind
of dodecapole appears to very promising in terms of developing a finite-time
singularity in the origin because of reciprocal strain of the mirror tubes. It
is furthermore susceptible to the analysis by the presented geometric blowup
criteria. Most of the diagnostics in this thesis are therefore performed on flows
which are based on initial conditions of this type.

Lamb-dodecapole

Figure 5.5.: Left: Lamb dipole used in the Lamb-dodecapole initial conditions.
Right: Dipole used in Grauer’s initial conditions. Both are scaled to fit in ampli-
tude and size.

For the Euler equations, a single stretch-free axisymmetric vortex may have
arbitrary radial dependence for the vorticity to remain stationary in time. The
same is not true for vortex dipoles: An isolated vortex dipole propagating
through the domain does not preserve its shape. This so-called vortex shedding
is believed [80] to influence and possibly suppress a self-amplifying behavior.
There are exact form-preserving dipole solutions of the 2-dimensional Euler

equations which may be used to construct initial conditions that do not exhibit
vortex shedding. The most famous is the Lamb-dipole introduced by Lamb [70].
Following Wu et al. [93] it is defined by

ω(r) =


2UkJ1(kr)

J0(ka) sin(θ) for r < a

0 for r ≥ 0
(5.36)
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where k is chosen such that ka is the first zero of J1, i.e. ka ≈ 3.8317. In
Figure 5.5 this vorticity distribution is compared to the vorticity profile given
in equation (5.35). Note that even though the distribution of vorticity for the
Lamb dipole is less sharp than for the Grauer conditions, it is not differentiable
at r = a, as can be seen in equation (5.36). Because of this, strictly speaking, the
Lamb dipole is an improper candidate for the search for finite-time singularities.
This issue is usually overcome by smoothing high frequency components in order
to smear out the discontinuity in the gradient of the vorticity.
Orlandi and Carnevale [80] where the first to use Lamb dipoles to construct

a colliding pair of dipoles, observing a rapid amplification of vorticity for a
period of time, with a slowing growth at later times due to either depletion of
nonlinearity [37] or lack of resolution.
The Lamb dipole is used in a similar manner in the context of this thesis

to form a Lamb dodecapole analogous to Grauer’s initial conditions presented
above.

5.3. Evolution of the flow
In the previous section the vortex dodecapole initial conditions were introduced
as a promising candidate for the formation of a finite-time singularity in the
Euler equations. A detailed motivation was given to distinguish the vorticity-
strain coupling mechanisms in high-symmetry dodecapole flows from similar
processes in perturbed vortex tubes or anti-parallel vortex tubes.
This section is devoted to the visible results of the actual simulation of such

configurations. For this purpose, the CWENO vector potential formulation
presented in section 3.2 is used in conjunction with adaptively refined meshes
for simulations with a resolutions of up to 81923 effective grid points, taking
into account the increase in resolution due to the high symmetry of the initial
conditions. Both the Lamb dodecapole and the Grauer dodecapole introduced
in section 5.2 are used as initial conditions. A compilation of the conducted
numerical simulations, concerning their resolution and refinement strategy, is
given in table 5.1. It should be noted that the highest achieved resolution with
81923 grid points was merely conducted as a proof of concept, due to limited
available computing time.
In the following sections, an overview of the basic structure of vortex dode-

capole flows is given. This includes the presentation of vortex isosurface plots
of the flow evolution, with a focus on the latest stage, where the previously
bad resolved roll-up of pancake-like vortex sheets can be observed in full de-
tail. Conclusions are drawn from the visual appearance of the flow, concerning
the existence of locally self-similar or cascading self-similar point-wise singular
behavior.
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initial condition effective Resolution refinement criterion
lamb Lamb dodecapole 10243 no refinement
static1 Grauer dodecapole 10243 no refinement
static2 Grauer dodecapole 20483 no refinement
amr1 Grauer dodecapole 40963 AMR, |∇u|
amr2 Grauer dodecapole 40963 static refinement
amr3 Grauer dodecapole 81923 static refinement

Table 5.1.: Overview over properties of all production runs considered in this thesis.
Stated are the type of initial condition, the effective resolution at the final time
of the simulation (considering symmetries and refined grids) and the refinement
criterion.

As will be presented in the following paragraphs, the two considered vari-
ants of vortex dodecapoles do not differ significantly in their structure at late
times of the simulation. Due to slightly preferable behavior of the Grauer do-
decapole, concerning its smoothness in the transition region to the surrounding
flow, this initial condition is the favored one in the context of this thesis. All
high-resolution production runs are performed using the Grauer dodecapole as
well as most of the blowup criteria and diagnostics. Most notably, all geometric
results of this thesis refer to that case. Because of the overall similarity of both
initial conditions, the obtained results may nevertheless be interpreted as valid
for the whole class of vortex dodecapole flows.

5.3.1. Grauer dodecapole

The Grauer dodecapole presented in section 5.2.4 was chosen as a prototype for
the class of vortex dodecapole initial conditions. Its main features are a smooth
vorticity profile with compact support and straight, unperturbed initial vortex
tubes.
Pictured in figure 5.6 is the evolution in time for the Grauer dodecapole.

Shown are isosurfaces of the absolute vorticity |ω(x, t)| at 75% of the peak
vorticity for different times. Due to the high symmetry, only one octant of the
computational domain is simulated. The figures therefore depict only one half of
a vortex tube, with twelve similar tubes in the total domain. The initial phase
of the development is depicted in the first two sub-figures: The initially straight
tube gets slightly stretched due to interaction with the neighboring tubes. In
the third frame, the well-known flattening is in progress. The last three pictures
present the final stage of the flow, where the tip of the sheet rolls up and forms
a secondary vortex sheet. In the final figure, the secondary sheet exceeds the
original sheet in length. Its tip gets drawn out of the collapsing region.
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Figure 5.6.: Evolution of the Grauer dodecapole. Pictured are isosurfaces of the
absolute vorticity, |ω(x, t)| at 75% of the peak vorticity. Only one of twelve tubes
is shown. The flattening of the vortex tube is followed by a roll-up. The developing
secondary sheet finally exceeds the original sheet in size. All pictures are from run
amr1.
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The appearance of the roll-up and the secondary vortex sheet are a first evi-
dence against the formation of a point-wise singularity. Especially, the proposed
scenario of a locally self-similar amplification and collapse (see section 5.1.2)
seems unlikely: The initially round vortex tubes are severely deformed and do
not resemble their initial configuration in shape. Additionally, no “cascading”
type of self-similarity is observed, at least not on time scales reached by the
simulation. The speculation that the formation of a roll-up may lead to the
emergence of a tube-like structure which again form a dodecapole arrangement
is clearly conflicting the numerical evidence.
Nevertheless, a rapid accumulation of vorticity at the tip of the sheet is ob-

served. This behavior will be analyzed in detail with help of the presented
criteria in section 5.4.

5.3.2. Lamb dodecapole
The Lamb dodecapole initial conditions, as introduced in section 5.2, are mo-
tivated by the fact that each Lamb dipole in itself is an exact and invariant
solution to the Euler equations. It was therefore anticipated by Orlandi and
Carnevale [80] that a more complex setup consisting of Lamb dipoles will ex-
hibit considerably less core deformation for the vortex tubes. If this assump-
tion would be met, the dodecapole arrangement could lead to the formation of
a locally self-similar blowup scenario: The Lamb-dipoles would approach and
amplify each other, but, without core deformation, stay in their relative align-
ment and shape. The ever-decreasing length-scale would result in a point-wise
collapse to the origin.
As shown in figure 5.7, this scenario is not observed in the numerical simu-

lation. The initial tubes are deformed severely in the course of the simulation.
Vortex core deformation is not prevented. This is hardly surprising, since the
vortex dodecapole relies on strain imposed by the rotational images of the tube
by design, while the Lamb dipole configuration only prevents deformation by the
reflectional image. Due to the initially close proximity of all twelve vortex tubes
and the short timescale of the evolution, deformation induced by the reflectional
partner seems to be negligible, regardless of the actual vorticity profile of the
tubes.
Altogether, the evolution of the vortex tubes for the Lamb case resembles

the above presented Grauer dodecapole flow: An initial flattening of the tubes
is followed by a roll-up. The emerging secondary vortex sheet gets drawn out
and finally exceeds the original sheet in length. Due to the overall similarity
of both flows it seems safe to deduce that the topological flow evolution only
weakly depends on the precise vorticity profile. This may be seen as motivation
to transfer the results for just one particular initial condition to the whole class
of vortex dodecapole flows.
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5.3. Evolution of the flow

Figure 5.7.: Evolution of the Lamb dodecapole. Pictured are isosurfaces of the abso-
lute vorticity, |ω(x, t)| at 75% of the peak vorticity. Again, only one of twelve tubes
is shown. As before, the vortex tube is flattens, followed by a roll-up. A secondary
vortex sheet develops and gets drawn out of the center region. All pictures are from
run lamb.
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5.3.3. Comparison and conclusion

Figure 5.8.: Direct comparison between the Lamb and the Grauer vorticity profile at
late time. The vorticity in a slice near the plane of symmetry, z = 0.1, is pictured.
The Lamb dodecapole (top) exhibits a more pronounced trailing vortex sheet near
the symmetry plane. This effect is considerably smaller for the Grauer vorticity
profile (bottom).

The results of the previous two sections lead to the conclusion that no remark-
able differences exist in the overall properties of the flow. In figure 5.8, a direct
comparison between low resolution runs (10243) for the Grauer and the Lamb
vorticity profile are shown for a late time to reveal the details of the differences.
Most of the large-scale structures are identical for both flows. The initial shape
of the Lamb profile is responsible for the formation of a less sharp roll-up of
the vortex sheet and the accumulation of secondary vorticity inside the kink.
Furthermore, the trailing vortex sheet, which is an artifact of the collapse of the
vortex dipoles to the center, is considerably stronger for the Lamb dipoles.
Since, additionally, the core deformation is not effectively prevented in the

Lamb case, these arguments were the reason that all high resolution runs and
all geometric diagnostics were performed for the Grauer dodecapole initial con-
ditions.

90



5.4. Blow-up Criteria

5.4. Blow-up Criteria
In chapter 4, criteria have been introduced for the analysis of possible finite-time
Euler singularities. The most famous of them, the criterion of Beale et al. [3],
has been used to evaluate the accumulation of vorticity in nearly every attempt
to numerically probe Euler singularities. As for the Lagrangian and geometric
approach to Euler singularities, numerical results are relatively scarce.
In the following sections I will present the numerical measurements for the

considered criteria. All obtained data stems from high resolution refined sim-
ulations of the Grauer dodecapole. The simulation data will be used to serve
as numerical evidence against the formation of a finite-time singularity for the
class of vortex dodecapole flows. First, in section 5.4.1, the accumulation of vor-
ticity is quantitatively shown and the classical BKM approach will subsequently
be taken in section 5.4.2 to underline the misleading nature of monitoring Ω(t)
alone. In what follows, evidence against a point-wise collapse is presented in
section 5.4.4 with the help of geometric properties of the critical vortex line. Fi-
nally, uncritical scaling of velocity components is used in section 5.4.5 to serve
as numerical evidence against a blowup of vorticity by means of theorem 2
presented in section 4.2.4.

5.4.1. Accumulation of vorticity and strain
The vortex dodecapole is designed to be a violent initial condition with rapid
accumulation of vorticity. Unlike e.g. the Taylor-Green vortex or Kerr’s initial
conditions, no sustained phase of flow evolution has to be awaited for the critical
structures to form. Thus, vorticity accumulation sets in immediately.
Figure 5.9 shows the evolution of the maximum of vorticity Ω(t) in time for

different resolutions. A higher effective resolution increases the amount of vor-
ticity accumulation until the simulation begins being under-resolved. For all
cases, the value of Ω(t) increases rapidly without showing any sign of decelera-
tion or saturation. The overall vorticity amplification from initially Ω(0) = 20
exceeds a factor of 100 for all resolutions larger than 10243. In all cases, the
location of the maximum vorticity follows the tip of the vortex sheet presented
in section 5.3.1, and is located at the intersection of the vortex sheets when the
roll-up begins to form.
The growth of the maximum of the norm of the strain, ‖S(·, t)‖L∞ behaves

in a similar manner as the peak vorticity. Figure 5.10 shows the increase in
maximum strain, which is about ‖S(·, 0)‖L∞ ≈ 12.4 initially and grows by two
orders of magnitude in the course of the simulation. Position of maximum strain
and maximum vorticity are fairly far apart at the beginning of the simulation,
but collapse to a point at late stages, with the phase of collapse beginning at
about t = 0.5. This convergence in the positions of strain and vorticity to
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Figure 5.9.: Evolution of the maximum vorticity Ω(t) in time. The initial peak
vorticity Ω(0) = 20 is amplified by at least two orders of magnitude, with larger
results for higher resolution.
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Figure 5.10.: Evolution of the norm of the strain tensor ‖S(·, t)‖L∞ in time.
The amplification is again by at least two orders of magnitude, starting at
‖S(·, 0)‖L∞ = 12.4. Strain was not measured for 20483.
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a point was anticipated by Pelz [82] as part of a point-wise singularity. This
theory will be further addressed by geometrical means in section 5.4.4.

5.4.2. Beale-Kato-Majda
As stated in section 4.1.2, the BKM-criterion states, that no finite-time singu-
larity can occur for the incompressible Euler equations up to time T , if

T∫
0

Ω(t)dt ≤ C . (5.37)

As a consequence, the growth in time of Ω(t) has to fulfill Ω(t) ≈ 1/(T − t)γ
with γ ≥ 1 to be compatible with BKM.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

t

Ω
(t
)

10243

20483

40963

81923

Figure 5.11.: Evolution of 1/Ω(t) in time. This mode of plotting suggest a growth
of Ω(t) ≈ 1/(T − t)γ with γ = 1 and a blowup time T ≈ 0.72.

A plot of 1/Ω(t) (by assuming γ = 1) is pictured in figure 5.11. At small
times t, this graph looks straight, but the growth rate changes at least twice in
the evolution of the flow. This can be explained by competing maxima in |ω|
overtaking the original Ω(t), thus changing the growth rate at different stages.
Nevertheless, at no time the vorticity looks as though saturating, and in the
latest stage of development suggests a blowup time of T ≈ 0.72.
Numerical data of this kind has been interpreted as evidence in favor of the

formation of a finite-time singularity before. Yet, even though the plot 5.11
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is rather suggestive, the growth may as well be fitted to some fast (double)
exponential growth.

5.4.3. Lagrangian evolution of pressure Hessian
As a theorem solely suited for flows obeying the Kida-Pelz symmetry, the La-
grangian blowup criterion of Ng and Bhattacharjee [78] was introduced in section
4.2.5. The computational framework developed to conduct the discussed sim-
ulations provides tools to monitor the Lagrangian evolution of fluid quantities
with the help of passive tracer particles (section 3.4.1). Because of this, even
though the criterion is in its nature rather distinct to the geometrical argu-
ments constituting the core of this thesis, it was included as an additional tool
to investigate the nature of dodecapole flows.
Summing up, the criterion connects the Lagrangian evolution of the second

derivative of the pressure with respect to x, ∂xxp, for some fluid element on
the x-axis to the finite-time blowup of ∂xux. The course of action, concerning
the numerics, is as follows: At the start of the simulation, a number of tracer
particles is initialized equally spaced on the x-axis. Due to the symmetry, uy =
uz = 0 and the tracers stay on the axis indefinitely. Periodically, the position of
all tracer particles, as well as ∂xux and ∂xxp at their position is written to the
disk. A subsequent post-processing procedure then searches for particles that
maintain stable positivity of ∂xxp as candidates for a blowup of ∂xux on the axis.
The number of particles injected into the flow at the beginning of the simu-

lation is 106, which results in roughly 100 particles per grid-cell on the highest
complete grid level in the adaptive runs. Even though this may seem quite a
lot, the particles thin out severely around the critical location at later times,
which makes such a high particle count necessary.
Plotting ∂xxp and ∂xux at all particle positions at different times helps ana-

lyzing the situation. As plotted in figure 5.12, the influence of the vortex tubes
on the values of ∂xxp and ∂xux is clearly identifiable and the propagation of the
tubes can be observed. At later times, the maximum of ∂xxp increases rapidly,
but the corresponding region of positivity collapses accordingly. Figure 5.13
(left) shows the values of ∂xxp at very late time. Even though particles cluster
in regions of negative values, there nevertheless is a non-vanishing zone of ex-
treme ∂xxp. As visible in 5.13 (right), this has a direct consequence for ∂xux.
As expected, in the region of high ∂xxp, the value for ∂xux does peak locally.
Yet, as derived in section 4.2.5, for ∂xux to blow up on the axis, ∂xxp has to

be positive along a Lagrangian trajectory. Thus, it is necessary to identify those
particles which maintain a positive value of ∂xxp for long time intervals. The
result is depicted in figure 5.14 (left): Particles on the axis travel faster than
the vortex tube center-lines, and even get accelerated further when entering the
zone of extreme values for ∂xxp. Because of that, each observed critical particle
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Figure 5.12.: Distribution of ∂xxp (left) and ∂xux (right) along the x-axis for dif-
ferent times.
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leaves the region of positive ∂xxp eventually. Consequently, as depicted in figure
5.14 (right), ∂xux does initially grow, but breaks down as soon as the critical
zone is left.
Summing up, even though the number of advected particles was quite high, no

particle fulfilling the criterion of Ng and Bhattacharjee [78] could be identified
and the existence of a blowup of ∂xux seems unlikely from a numerical point
of view. This is hardly surprising, since the vortex dodecapole formation by
design favors a possible blowup at the core of the vortex tubes (where the
maximum vorticity is attained), instead of on the coordinate axes. Therefore,
the informative value of this theorem for the considered case is limited and the
results for the geometric criteria presented in the following sections are more
conclusive.

5.4.4. Geometry of the critical vortex line
In section 4.2.2, the regularity of the vorticity direction field along vortex lines
was considered as a relevant indicator for vorticity accumulation. Specifically it
was stated by theorem 1 of Deng et al. [30], that a blowup of vorticity in any
point x is impossible as long as for some y on the same vortex line uncritical
growth of vorticity is observed and along the vortex line connecting x to y the
quantity ∇ · ξ remains bounded.
There is considerable freedom in the choice of x(t) and y(t), which has to be

narrowed down for the implementation in numerical simulations. An obvious
choice for x(t) is the location of the maximum of vorticity Ω(t). This allows
inferring the global growth from the local behavior of the considered vortex line.
For y(t), any point on the same vortex line sufficiently well separated from the
collapsing critical regions seems appropriate. This choice was already considered
by the creators of the theorem:

“Let us take the point x(t) to be the point inside one tube where the
maximum vorticity is attained, and y(t) to be a point on the same
vortex line, but outside the tube. It is easy to check that within
this inner region, condition (2.1) [boundedness of ∇ · ξ] is satisfied.
By Theorem 1 we see that if the maximum vorticity outside these
small tubes is integrable in time, then there is no blowup inside the
tubes. It is likely that the maximum vorticity outside these small
tubes has a growth rate smaller than that inside these small regions.
This casts doubt on the validity of Pelz’s claim...” [30]

In fact, the authors admit that even though it is “likely” for the vorticity
outside the innermost region to be well-behaved, a numerical simulation com-
paring the growth-rates for different points a vortex line is necessary to verify
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5.4. Blow-up Criteria

the assumptions. It is the primary purpose of this section to establish that
even though the outer regions, as the plots in section 5.3 suggest, appear to the
naked eye to be mild in growth, in fact exhibit identical growth rates as the core
region. As a consequence, the situation for the dodecapole initial conditions is
not as easy as the quotation from [30] suggests.

x(t)

y(t)

x(t)

y(t)

Figure 5.15.: Two different ways of making use of theorem 1. Left: Critical growth
of vorticity in a critical region is connected to mild growth of vorticity far outside.
Right: Constant convergence along the vortex line segment to distinguish between
point-wise collapse and blowup of the complete segment.

The approach to theorem 1 employed in this work is slightly different (compare
figure 5.15). Instead of arbitrarily choosing y(t) somewhere far away from the
critical region, define y(t) via

y(t)∫
x(t)

∇ · ξds = C (5.38)

for some constant C independent of the time t, where s denotes the arc-length
parameter of the curve from x(t) to y(t). In words, choose y(t) on the same
vortex line as x(t) such that the accumulation of tightening of nearby vortex
lines is the same for every instance in time. This provides us with the ability to
clearly distinguish between to separate cases of supposed blowup:

1. For every constant C, y(t) approaches x(t) in finite time to collapse to a
single point. This would constitute the desired behavior for a point-wise
singularity in the origin.
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2. If for any constant C, x(t) and y(t) stay well separated in time and do
not collapse to a point, the whole vortex-line from x(t) to y(t) has to blow
up in order to maintain critical growth in x(t). This scenario, however
unlikely, is not analytically ruled out.

If there is no approach of y(t) to x(t) and the growth rate of |ω(y(t), t)| is
clearly uncritical, a singularity is obviously ruled out by theorem 1.
Numerically, this test was implemented as follows:

• At each timestep, identify the point of maximum vorticity as x(t).

• Follow the vorticity direction vector field while integrating ∇· ξ along the
path. This is done with a third-order Runge-Kutta integrator in space.

• As soon as the integrated quantity exceeds the threshold C, identify the
current location on the vortex line as y(t). To increase precision, the
endpoint is found via bisection.

• Geometric properties and diagnostics for the vortex line segment are writ-
ten to the disc, especially its length and |ω(y(t), t)| to distinguish the
cases introduced above.

This procedure is carried out for the whole time interval, as long as the simula-
tion is well resolved. The constant C is chosen in a reasonable way to achieve a
length of the vortex line segment that fits into the computational domain in the
beginning of the simulation, but is still well resolved at the chosen resolution at
later times. Hence, the whole vortex line segment is resolved reliably throughout
the simulation.
The results for the Grauer dodecapole are presented in figure 5.16 for differ-

ent constants C ∈ {0.25, 0.5, 1, 2}. Initially, the vortex line segments do not
accumulate enough ∇ · ξ, so that the length is bounded by the size of the com-
putational domain (x ∈ [0, π]3). At some point, depending on the value of C,
the threshold is reached and the length of the vortex line segment decreases.
Yet, for all considered cases of C, the length does not collapse to a point, but
saturates at early times without approaching l(t) = 0. This behavior appears to
be stable up to the latest time of the simulation. The final length of the vortex
line segments is at least 0.3 for the smallest case of C (C = 0.25), which is still
well resolved with at least 200 ∆x for the simulation with 40963 grid points.
This result, therefore, is a numerical evidence against a point-wise blowup for
the vortex dodecapole class of initial conditions. This is in concordance with
the estimate by Deng et al. [30].
Yet, monitoring the development of ω(y(t), t) yields, as shown in figure 5.16

(right), a similar growth rate for the accumulation of vorticity at the endpoint as
for the beginning of the vortex line segment. This is hardly surprising, since by
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∫ y
x ∇·ξds. Bottom: Vorticity at the endpoint y of these

vortex line. Once satiated, the growth rate is the same for all y.
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construction a constant value for C directly links the growth rates of |ω(x(t), t)|
to |ω(y(t), t)|. Nevertheless, a numerical verification of this analytic equality
may be seen as a confirmation that the observed growth rate of |ω(x(t), t)| is
by no means a numerical artifact in an isolated small area, but is reproduced
at points far away from the critical region, which appear to be well-behaved
at first view. The possibly critical growth in the perspective of BKM is, thus,
confirmed by the global flow.
Furthermore, since for a large portion of the simulation the distance l(t)

is approximately constant, this can be seen as an evidence for the existence
of a non-vanishing vortex line segment that blows up in every point. Thus,
contradicting the estimation of Deng et al. [30], the possibility of a blowup of
the vortex dodecapole flow is not excluded by theorem 1.
The popular scenario of a collapse to a single point, on the other hand, is

clearly conflicting the numerical evidence. Adding to the conclusion of section
5.3 this is a further result against the formation of a locally self-similar scenario
as presented in section 5.1.2: The critical region of accumulating vorticity does
not collapse in a way compatible with equation (5.9) for reasonably small h. To
fulfill the scaling requirements of the Euler equation for large h, the velocity
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field u therefore would have to blow up in time as 1/(T − t).
The discovery of a possibly critical vortex line segment in the vortex dode-

capole flow, however, is afflicted with the blemish, that distinguishing between
critical and sub-critical blowup of the whole segment is in no way more conclu-
sive than distinguishing between critical and sub-critical growth of Ω(t). Thus,
learning from the lesson taught by 25 years of numerically testing BKM, this
should not be interpreted as clear evidence in favor of a finite-time singularity.
As confirmation of the reliability of the numerics, figure 5.17 shows the rela-

tive growth rate of |ω(y(t), t)| with respect to |ω(x(t), t)|. As required by the
analytical result,

|ω(y(t), t)|
|ω(x(t), t)| = exp(C) , (5.39)

this behavior is well reproduced by the numerics.

5.4.5. Lagrangian evolution of the critical vortex line
segments

The geometric properties of Lagrangian vortex line segments, especially their
curvature κ and the tightening of their surroundings ∇·ξ have been established
as essential parameters in understanding the nature of rapid accumulation of
vorticity in Euler flows. The theoretical background, as presented in section
4.2.4, leads to the formulation of theorem 2 of Deng et al. [30, 31] as a blowup
criterion. The ambition behind this is to utilize these geometric properties,
monitored in a numerical simulation, as more reliable means of distinguishing
between a finite-time singularity and a mere fast accumulation of vorticity.
Despite high hopes from an analytical point of view that these considerations

will shed light on the true nature of vorticity accumulation, numerical results
observing geometrical properties of Lagrangian vortex filaments are scarce. This
is primarily due to the fact that Eulerian quantities such as Ω(t) are readily
trackable in post-processing, while monitoring the Lagrangian evolution requires
additional computational effort. On top of that, the geometry of integral curves
at an instance in time, though in principle computable in post-processing, as
well as derived quantities such as their convergence and curvature, are quite
inaccessible in comparison to simple Eulerian criteria.
This section is devoted to the presentation of results concerning the assump-

tions of theorem 2 of Deng et al. [30] for vortex dodecapole initial conditions.
Quite similar to the previous section, there is considerable freedom in the choice
of the involved quantities. Deng et al. [31] recommend following the vortex line
on which the maximum vorticity is attained. This is impossible for the con-
sidered flow, since the Eulerian maximum of the vorticity is not advected, but
changes the vortex line in time. The strategy chosen in the context of this work
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therefore is as follows:

• Identify the Lagrangian fluid element α, which will contain the maximum
of vorticity at the latest time of the simulation, Ω(t) ≈ |ω(X(α, t), t)|.
A vortex line segment Lt starting here will intrinsically be “comparable”
to the maximum of vorticity (as in |ω(X(α, t), t)| & Ω(t)) at late stages
of the simulation. The assumptions concerning the segment are therefore
automatically met. In the numerics this procedure is implemented by
carrying out a precursory identical simulation with a huge number of tracer
particles (≈ 1 million) randomly distributed across the domain. Particles
that accumulate huge amounts of vorticity are selected for the production
run.

• At each instance in time, start a vortex line integration at X(α, t) along
the vorticity direction field. Monitor the maximum curvature ‖κ‖L∞(Lt)
and the maximum vortex line convergence ‖∇ · ξ‖L∞(Lt) during the inte-
gration and calculate λ(t). Stop the integration, as soon as λ(t) reaches a
fixed, arbitrary constant C. This defines Lt. In the numerics this is again
implemented with a third-order Runge-Kutta integration and bisectioning
to obtain the endpoint of Lt.

• For this vortex line segment Lt, calculate the length l(t), and the velocity
components Un and Uξ. From the collapse of the length l(t) approximate
the exponent B. This in turn provides the critical growth exponent A for
the velocity variables, Acrit = 1−B.

• Compare the increase in Un and Uξ to 1/(T − t)Acrit to distinguish between
critical and sub-critical growth of velocity.

This can be interpreted rather intuitively. By prescribing an arbitrarily fixed
λ(t), the vortex line segment is kept relatively geometrically uncritical, as the
length-scale is always adjusted accordingly. This process of “zooming in” just
enough to retain the geometric “criticalness” prescribes the rate of collapse to
a point, at least in the direction of the vortex line. All that is left to check is
whether the velocity growth in the immediate surrounding is fast enough to be
compatible with a finite-time singularity.
The results of the previous section, concerning a point-wise singularity versus

the blowup of a whole vortex segment, already anticipates, that the increase in
∇ · ξ around the critical vortex line is bounded. If the curvature of the vortex
line segment remains controllable (which is to be expected from the pictures),
then just a mild collapse of l(t) occurs. This leaves much room for Un and Uξ
to still be distinguishable from a critical growth.
Figure 5.18 shows the results for the Grauer dodecapole initial conditions.

Pictured is the length of the vortex line segment for the tracer that is arriving
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Figure 5.18.: Evolution of the length l(t) of the critical vortex filament Lt for dif-
ferent Lagrangian fluid elements. The length does not decrease as (T − t)B for any
B < 1, which would be faster than linear. The Lagrangian collapse of the vortex
segment is decelerating instead.

at a position of very huge vorticity at late stages of the simulation. The subplot
depicts the long-term behavior of the particle entering the critical region, while
the final stage of length decrease is magnified. The decrease in length does not
agree with a collapse in final time, but instead the shrinkage of the segment
decelerates clearly in time. This contradicts a scaling in time proportional to
(T − t)B for any 0 < B ≤ 1, which would be faster than (or, in the limiting case,
equal to) linear. It should be noted, that for the observed collapse in length,
the vortex segment curvature κ is the dominating term in M(t) = max(‖∇ ·
ξ‖L∞(Lt), ‖κ‖L∞(lt)), shadowing the effects of ∇ · ξ. This may lead to a change
of regime in the rate of collapse, if ∇ · ξ at some point exceeds κ in quantity.
It could furthermore be argued that the limit B → 0 is hard to exclude, since

the drop in length would be virtually instantaneous in time, with a close to
constant scaling before. In this limit, the quantities Un and Uξ would have to
grow roughly as 1/(T − t) to still allow formation of a finite-time singularity.
The quantities Un and Uξ where defined in section 4.2.4 as
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Figure 5.19.: Evolution of the quantities Un (top) and Uξ (bottom) in time. Un
does not appear to be growing, while Uξ, though increasing in time, does not exhibit
a finite-time blowup as 1/(T − t).
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Uξ(t) = max
x,y∈Lt

|(u · ξ)(x, t)− (u · ξ)(y, t)|

Un(t) = max
Lt
|u · n| .

Uξ quantifies the largest difference in axial velocity along the segment. For an
isolated collapsing vortex tube, this quantity can be expected to not increase
critically, since the tangential velocity is less likely to rapidly change than the
radial velocity. However, this initial explanation does not consider the influence
of the mirror tubes. Un on the other hand may be interpreted as the velocity
of the vortex tube’s core itself. Again, in an isolated setup this velocity is not
expected to blow up.
Figure 5.19 shows the observed behavior of Un and Uξ in time for the tracer

as considered above. Un stays roughly constant in time, showing no signs of a
blowup. Uξ, even though increasing in time, does not fit to critical growth, in
particular not like 1/(T − t) in time. Thus, the assumptions of theorem 2 are
well met. Excluding a change of regime in this late state of the simulation, this
therefore poses a strong evidence against a finite-time singularity for the class
of vortex dodecapole initial conditions.
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6. Summary
This work presents numerical evidence against the formation of a finite-time sin-
gularity for the vortex dodecapole initial condition. It uses data obtained from
high resolution adaptively refined numerical simulations to test the assumptions
presented by geometric blowup criteria.
In the course of this work, a numerical framework has been extended to

allow the integration of the incompressible three-dimensional Euler equations
on adaptively refined grids, which supports the diagnostics of geometrical and
Lagrangian criteria and scales close to optimal, as well as outputs with good
performance, on massively parallel machines.
The Euler equations for incompressible fluids are known for more than 250

years. Nevertheless, the question of the existence of smooth solutions for smooth
initial conditions is not answered. With the advent of scientific computing,
analytical results are accompanied by numerical simulations, which are used
to gain insight into the evolution of flow structures and the interplay between
physical quantities. In recent times, numerical simulations have become an
indispensable tool for the assessment of relevance and applicability of numerical
theorems to the actual flow. Nevertheless, rigorous proof has to be given in
mathematical terms, and numerical results can just be used as evidence and
clue, pointing in the general direction to be taken analytically.
Next to classical results such as BKM, recently the geometric analysis of the

flow [30, 31] has played a role in distinguishing finite-time singularities from
flows that exhibit merely fast accumulation of vorticity. This approach, applied
to numerical simulations, may provide clearer insight into the possible formation
of the singularity. Most notably, it implies numerical techniques to distinguish
between a point-wise blowup and the blowup of a whole vortex line segment:
Monitoring a vortex line which maintains a fixed convergence of neighboring
lines,

∫
∇ · ξ = 0, the absence of a collapse must coincide with a blowup of

vorticity along the whole segment, if one wants to stick to the formation of a
finite-time singularity. Furthermore, as shown in section 4.2.4, if a blowup of
curvature and ∇ · ξ is not observed, then components of the velocity have to
scale like 1/(T−t). Since in numerical simulations, velocity growth is usually far
from that, this argument can be used against critical accumulation of vorticity
much more clearly than the usual approach via BKM .
Generally, a singularity in the Euler equations is believed to be point-wise

and supposedly locally self-similar. Analytical results investigating the bounds

107



6. Summary

of such scenarios are quite scarce for the Euler equations, yet recently several
cases relevant to numerical simulations have been ruled out [13, 14]. By far the
most important process in the formation of singularities in finite time is the
coupling of vorticity and strain. If the vorticity aligns with the eigenvector of
the strain matrix with positive eigenvalue long enough, and if that eigenvalue
grows alongside the vorticity, then the accumulation of vorticity may lead to
a finite-time blowup compatible with BKM. It is not known to date, whether
internal mechanisms render such amplification impossible. Yet, it is known
from turbulence research that the mentioned alignment is at least unlikely in
a natural context [1]. It is now the mission of the physicists to design initial
conditions which exhibit and maintain, despite its inherent instability, a period
of vorticity-strain coupling long enough to cause the blowup.
Several such candidates are proposed in the literature [6, 52, 59, 90]. A

perturbed vortex tube as well as anti-parallel vortex tubes are afflicted with the
inconvenience to require the curvature in the plane to blow up alongside the
vorticity [82]. This is due to the fact that an amplification of the strain with the
same growth rate as the vorticity can be connected via the Biot-Savart law to
the requirement to kink infinitely at the location of maximum vorticity. On the
other hand, due to axial stretching of the vortex tube, a growing strain reduces
the curvature in the plane of symmetry. These counteracting processes may limit
the ability of the aforementioned initial conditions to maintain vorticity-strain
coupling over a period of time long enough for the formation of a singularity in
finite time.
The class of high-symmetry flows, and most notably among them the vortex

dodecapole configuration, does not suffer from the above mentioned disadvan-
tage: Here, the strain imposed on the vortex tubes in the plane of symmetry
is induced by the rotational images [82]. Axial strain is not dictated by the
curvature and the above canceling does not take place. This renders the vor-
tex dodecapole initial condition to be one of the most promising in terms of
singularity formation known today.
This is the reason why this work is concerned with the numerical simulations

of vortex dodecapole initial conditions, and more specific with Grauer or Lamb
vorticity profiles. Comparison of the simulation shows that different vorticity
profiles yield similar visual and geometrical appearance. This serves as an argu-
ment that the obtained results may apply to the whole class of vortex dodecapole
flows. Monitoring the growth rate of Ω(t) quantifies the well-known vorticity
amplification. Amplification by more than two orders of magnitude was reached
for both vorticity and strain, exceeding by far values achieved by previous sim-
ulations [41]. Applying this data to BKM would lead to the conclusion that
a finite-time singularity at time T ≈ 0.72 fits via extrapolation. Yet, as the
history of Euler simulations has shown, statements obtained by extrapolation
are to be handled with care.
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Following the argument given in section 5.4.4, a point-wise collapse should
coincide with a blowup of∇·ξ at the point of maximum vorticity. This statement
can be broadened: A finite-time singularity must either lead to a blowup of ∇·ξ
at the point of maximum vorticity, or the whole critical vortex line segment
has to blow up. Utilizing the geometric information obtained via vortex line
integration from the numerical simulation, it is observed that∇·ξ does not grow
in a way to be compatible with a point-wise collapse. Yet, measuring the growth-
rates on the critical vortex line, high rates of amplification are measured far away
from the critical region. Even though it is hard to distinguish, whether this
amplification is critical or sub-critical, this might be interpreted as an evidence
for the blowup of the complete vortex line segment (even though it suffers exactly
the same vulnerabilities as extrapolation in BKM). A point-wise blowup, on the
other hand, seems to contradict the numerical results up to the time reached.
Evidence against a blowup of the whole critical vortex line segment is found

when looking at the geometric properties of Lagrangian vortex line segments. It
was shown by theorem 2 in [30] that a blowup of vorticity is directly connected to
the interplay between velocity growth and the collapse of vortex line filaments,
when maintaining the overall same shape in geometric means (i.e. the same
λ(Lt)). Since curvature and∇·ξ do not increase in order to support a finite-time
collapse of the segment, velocity components in the vicinity of the vortex line
filament would have to increase as 1/(T − t) to support the blowup hypothesis.
Up to the time reached, critical growth may be excluded by numerical means.
This poses a numerical evidence against the formation of a singularity in finite
time for vortex dodecapole configurations.
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A. Grid structure and notation
A numerical problem is defined on a spatial domain Ω ⊂ Rd of dimension d with
arbitrary form. The framework is restricted to d = 3 and rectangular domains
only. The notation will be introduced for two dimensions due to readability,
but can readily be extended to three dimensions. With h ∈ R2 being the grid
spacing vector h = (hx, hy) we define the infinite grid

Gh := {(xi, yj) ∈ R2|x = ihx, y = jhy; i, j ∈ Z}

and respectively for other dimensions d. With Ωh := Ω ∩ Gh we denote our
discrete computational domain or grid. For hx = hy = h we call our grid a
square grid.
Any discrete function fh : Ωh 7→ R can now be described by the simple

notation
fi,j := fh(xi, yj) = fh(ihx, jhy).

For discrete operators L : Ωh1 7→ Ωh2 operating on a discrete function fh1

on the grid Ωh1 it is convenient to introduce the stencil notation by calling

[si,j] =



... ... ...
· · · s−1,1 s0,1 s1,1 · · ·
· · · s−1,0 s0,0 s1,0 · · ·
· · · s−1,−1 s0,−1 s1,−1 · · ·

... ... ...


the stencil of L, if

Lfm,n =
∑
(i,j)

si,jfm+i,n+j

for any f : Ωh1 7→ R and m,n ∈ Z. All these notations are easily generalized to
any dimension d. It will be used in the following paragraphs for the description
of the multigrid algorithm.
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In this section, the implementation of the multigrid algorithm to the framework
racoon III is described. For a broader look on the topic of multigrid algorithms,
see, for example, the books by Trottenberg et al. [91] or Briggs et al. [10].
Despite the fact that just the Poisson equation will be treated here, it is

convenient to introduce an abstract notation. Consider the system of linear
equations

Lv = f, (B.1)
with a linear operator L, the right-hand-side f and the exact and supposedly
unique solution v. With u being an approximation of the solution, we define
the difference to the exact solution, the (algebraic) error, by

e = v − u (B.2)

and the residual or defect by
r = f − Lu. (B.3)

From the uniqueness of the exact solution it follows directly that a vanishing
error is equivalent to a residual equal to zero. Furthermore it is easy to see that
the original problem Lv = f is equivalent to the so called defect equation Le = r
(which only holds as long as L is linear). As the numerical problem is discrete
rather than continuous, the index h on each variable or operator denotes the
grid spacing, so the main equation becomes

Lhvh = fh or Lheh = rh (B.4)

on the discrete domain (grid) Ωh. For details on the notation used in this
section, see Appendix A.
The multigrid idea is based on combined error smoothing on multiple grids

with different grid spacing. Thus, the main principles are error smoothing (re-
laxation) and coarse grid correction, which both will shortly be discussed in the
following pages. Subsequently it is shown how both parts are interlinked to form
a complete multigrid cycle.

B.1. Smoothers
Consider a square grid Ωh with grid spacing h. By uni,j we denote the current ap-
proximation u at (xi, yj) ∈ Ωh at iteration step n. The discrete finite difference
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two-dimensional Poisson equation now looks like

1
h2 (uni−1,j + uni+1,j + uni,j−1 + uni,j+1 − 4uni,j) = fi,j (B.5)

and can be solved for uni,j to be used iteratively:

un+1
i,j = 1

4(uni−1,j + uni+1,j + uni,j−1 + uni,j+1 − h2fi,j) (B.6)

or, in stencil notation:

un+1
i,j = 1

4

 1
1 0 1

1

uni,j − h2

4 fi,j (B.7)

This type of iteration is called the Jacobi iteration (JAC). By damping the
smoothing by a factor ω,

un+1
i,j = ω(1

4

 1
1 0 1

1

uni,j − h2

4 fi,j) + (1− ω)uni,j

= ω

4

 1
1 4( 1

ω
− 1) 1
1

+ h2ω

4 fi,j,

one obtains the ω-Jacobi iteration (ω-JAC). If applied several times, like shown
in figure B.1, the error of the approximation becomes smooth. It takes quite
a lot of steps for the error to become small, but after very few steps (just
one or two) the high frequency noise of the error is already damped. This
key observation will be used later on. Of course for the case ω = 1 ω-JAC
is equivalent to plain JAC-iteration. In practice, however, a choice of ω =
0.8 yields the best results regarding convergence rates, slightly depending on
the problem and initial conditions. A detailed mathematical analysis of the
smoothing properties of ω-JAC can be found in section 2.1.2 of [91].
There are several smoothers, differing in properties like convergence rate,

stability and scaling behavior. I will very briefly introduce three of them, all of
which were successfully implemented into the program.

B.1.1. Gauss-Seidel-type iterations
Easier to implement, superior in convergence rate (or more importantly smooth-
ing properties) and memory usage, but more difficult to handle mathematically
are the so called Gauss-Seidel-type relaxation methods. While in JAC-type it-
erations the whole field is updated at once, here the smoothing occurs in a
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Figure B.1.: Smoothing behavior for a random function with ω-JAC. High frequency
modes are damped fast, large-scale fluctuations deplete very slow.

determined ordering. Because of this, the already updated values are reused
and there is no need to store the field twice. The most natural way to sweep
through an array of values is lexicographic, which leads to the Gauss-Seidel
Lexicographic smoother (GS-Lex):

un+1
i,j = 1

4(un+1
i−1,j + uni+1,j + un+1

i,j−1 + uni,j+1 − h2fi,j), (B.8)

which is outlined in figure B.2 (left). GS-Lex in general shows higher con-
vergence rates than any JAC-type iteration, but breaks the symmetry of the
problem, as the lexicographic sweep through the field is itself asymmetric.
The Gauss-Seidel Red/Black (GS-RB) smoother takes this idea one step fur-

ther. The computational domain is divided into odd and even grid points, shown
in figure B.2 (right) (which resemble the black and red fields of a checkerboard,
hence the name) and each group of cells is updated as a whole. Thus all four
grid points accessed in the black sweep have already been updated in the red
sweep right before. In practice, GS-RB shows the highest convergence rate,
but because of the double sweep, it also requires more computation time (in
a massively parallel environment it requires twice as much communication, see
section 3.5.4).
Technically, equipped with just a smoother the Poisson equation could be

solved in several thousand iteration steps, depending on the resolution. The
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Figure B.2.: Left: Lexicographic sweep through the fields with GS-Lex. Updated
cells are colored green, old cells are red. Right: Grid distribution for Gauss-Seidel
Red/Black. The black points are calculated after all red points have been updated.

problem obviously lies in the slow decay of large-scale errors. Because of this
it seems plausible to take a closer look at the possible advantages in the use of
different (coarser and finer) grids.

B.2. Multiple grids and inter-grid
communication

As already mentioned, one of the main ideas for multigrid is the use of several
grids Ωh with different grid spacing h. It is, therefore, inevitable to define a
set of transfer operators (I)h1

h2 to transmit information from the grid Ωh1 to the
grid Ωh2. While arbitrary grids could be chosen in theory, it is more practical
both from a mathematical and numerical viewpoint to limit the choice to the so
called standard coarsening Ω2h with double mesh size in each direction as shown
in figure B.3.

(a) (b)

Figure B.3.: The choice of the coarsened grid: (a) Standard coarsening for vertex
centered grids. The coarse grid Ω2h is denoted by black points, the fine grid Ωh by
intersections. (b) Standard coarsening for cell centered grid. Red points correspond
to Ω2h, green points to Ωh.
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Most of the literature (e.g. [10] or [91]) mainly focus on vertex centered grids
as shown in figure B.3 (a), while the adaptive mesh refinement formulation with
flux conservation along cell interfaces suggests a cell centered potential (figure
B.3 (b)). Only the staggered vector potential formulation (3.2.1) differs in the
choice of placement, since each component of the vector potential is located on
cell edges. Since this placement requires a huge number of complex special cases
of control volumes for arbitrary refined grids, this case is not realized in racoon
III.
The choice of the transfer operators has radical influence on the overall per-

formance of the multigrid method. As a detailed discussion of all these aspects
exceeds the focus of this thesis, I will just summarize the implemented methods.

B.2.1. Prolongation
The prolongation operator for standard coarsening or interpolation operator
(I)2h

h : Ω2h 7→ Ωh maps coarse grid functions u2h to fine grid functions uh.
Two different prolongation operators were implemented, each with its own ad-
vantages and disadvantages.

(a) (b)

1
16

3
16

3
16

9
16

Figure B.4.: Two different prolongation operators for cell-centered grids: (a) Simple
copy of the coarse grid value. (b) Linear interpolation: All four surrounding coarse
grid values have influence on the fine cell.

“Interpolation” by copying: The easiest possible way to interpolate is just to
copy the values from coarse to fine grid (see figure B.4 (a)). All four fine
grid cells are set to the exact value of the corresponding coarse grid cell.
This leads to the stencil:

(C)2h
h =

[
0 0
1 0

]
2h

h

where the boxed field represents the [s0,0] position. While obviously this
“interpolation” is of poor order (with a 1st order error), it requires less
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computational time and, more importantly, no expensive boundary trans-
fers in a parallel environment. It should be noted, that the order of the
intergrid interpolation has no consequence on the order of the solution,
but just on the rate of convergence.

Linear interpolation: The second implemented stencil for prolongation reads

(L)2h
h = 1

16

[
3 1
9 3

]
2h

h
.

It weighs the four surrounding coarse grid cells with respect to their prox-
imity to the fine grid point. While exact up to second order it also requires
diagonal communication when parallelized, which has a noticeable impact
on the wall-clock performance.

For multiple reasons it is reasonable to employ higher order prolongation oper-
ators, which require larger stencils and even more communication, but provide
more precise results. Though implemented and tested, they are not discussed
here.

B.2.2. Restriction
Restriction operators (I)h2h map fine grid function uh on Ωh to the coarse grid
Ω2h. I will only commit myself to the straightforward choice of linear interpo-
lation here. All surrounding fine grid values are weighed equally with 1

4 :

(F )2h
h = 1

4

[
1 1
1 1

]
h

2h
.

This is a second order interpolation. While higher orders are implemented, they
are not used in the context of multigrid in racoon III.

B.3. Complete multigrid cycle
Now, as the tools are thoroughly laid out, it is time to finally merge them all
into the complete multigrid algorithm. The ultimate aim is to solve the discrete
Poisson equation on some square grid Ωh. The first step towards multigrid is
the introduction of the two grid cycle:

• Choose an initial guess uh on Ωh. This choice is quite arbitrary and uh = 0
works sufficiently well for Poisson-like problems. Preconditioning methods
for finding better first approximations are not covered here.
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• Relax νpre times on Ωh (Pre-smoothing). Now, only large-scale compo-
nents of the error should remain.

• Compute the residual rh = fh − Lhuh on Ωh.

• Restrict the residual to Ω2h: r2h = (I)h2hrh.

• Solve the defect equation (B.4) on Ω2h: L2he2h = r2h.

• Prolong the coarse grid error back to Ωh: eh = (I)2h
h e2h.

• Correct the approximation uh on Ωh with the error obtained above: un+1
h =

unh + eh.

• Relax νpost times on Ωh (Post-smoothing).

All these points are well defined and outlined above, except one that may sur-
prise: The original problem on Ωh is reduced to a similar problem on Ω2h. This
may at first seem futile and inconveniently self-referring. Of course, a problem
on Ω2h is simpler in a sense that it consists of less unknowns and, if solved
accurately, works very well for the fine grid, since the oscillatory components of
the error are eliminated by the relaxation.

h

2h

4h

8h(a)

h

2h

4h

8h(b)
h

2h

4h

8h(c)

Figure B.5.: Multigrid cycles: (a) V-Cycle, (b) W-Cycle, (c) F-Cycle

The complete multigrid cycle is just one step ahead: As the coarse grid prob-
lem resembles the original problem, it can itself be solved by a two grid cycle.
If this process is repeated on successively coarser grids Ω4h, Ω8h, etc., the whole
problem reduces to a Poisson equation on a coarsest grid with ideally just one
free grid point (or very few grid points, the amount depending on the grid struc-
ture and domain boundaries), where it can be solved exactly or by an adequate
number of smoothing steps. This idea of recursively solving the original problem
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on successively coarser grids, interpolating the correction back to the fine grids
and then smoothing the error is the whole gist of multigrid.
The multigrid cycle presented above, for reasons apparent in figure B.5, is

called V-Cycle. More complicated paths through the multiple grids, like the
W-Cycle or F-Cycle, are not only imaginable but also reasonable, because the
accuracy of the coarse grid approximation has a large effect on the finer grids.
The final choice of all components (Smoother, Pre- and Post-smoothing, Re-

laxation, Prolongation, Cycle type) has to be balanced under aspects like con-
vergence rate, stability, computational effort and communication overhead.
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